Strong-SLAM:Real-Time RGB-D Visual SLAM in Dynamic Environments Based on StrongSORT

计算机科学 同时定位和映射 计算机视觉 人工智能 RGB颜色模型 计算机图形学(图像) 机器人 移动机器人
作者
Wei Huang,Chunlong Zou,Juntong Yun,Du Jiang,Li Huang,Ying Liu,Guo Zhang Jiang,Yuanmin Xie
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad7a11
摘要

Abstract The assumptions of a static environment and scene rigidity are important theoretical underpinnings of traditional visual Simultaneous Localization and Mapping (SLAM) algorithms. However, these assumptions are difficult to work in dynamic environments containing non-rigid objects, and cannot effectively handle the characteristics of local areas of non-rigid moving objects, seriously affecting the robustness and accuracy of the SLAM system in localization and mapping. To address these problems, we improved ORB-SLAM3 and proposed a real-time RGB-D visual SLAM framework for dynamic environments based on StrongSORT - Strong-SLAM. First, we combine YOLOv7-tiny with StrongSORT to match the semantic information of dynamic targets. Optical flow and epipolar constraints are then used to initially extract geometric and motion information between adjacent frames. Subsequently, based on an improved adaptive threshold segmentation algorithm and geometric residuals, a background model and a Gaussian residual model are constructed to further extract the geometric information of dynamic targets. Finally, semantic and geometric information are integrated to perform global feature motion level classification, and motion probabilities and optimization weights are defined to participate in global pose estimation and optimization. Experimental results on the publicly available TUM RGB-D dataset show that Strong-SLAM reduces the Absolute Trajectory Error (ATE) and Relative Pose Error (RPE) by at least 90% compared to ORB-SLAM3, achieving performance comparable to the most advanced dynamic SLAM solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bubble完成签到 ,获得积分20
刚刚
啥时候吃火锅完成签到 ,获得积分0
刚刚
1秒前
华仔应助哟喂采纳,获得10
1秒前
SciGPT应助丸子顺利毕业采纳,获得10
2秒前
Lucas应助mumu采纳,获得10
4秒前
123完成签到,获得积分10
4秒前
4秒前
楼下小黑完成签到 ,获得积分10
5秒前
故酒应助科研通管家采纳,获得10
5秒前
卡卡西应助科研通管家采纳,获得10
5秒前
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
IMxYang应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
悠旷完成签到 ,获得积分10
5秒前
5秒前
软语完成签到,获得积分20
6秒前
saaa完成签到 ,获得积分10
6秒前
活力的寻云完成签到 ,获得积分10
7秒前
zho发布了新的文献求助10
7秒前
小涵完成签到,获得积分20
8秒前
CodeCraft应助忧郁的夏槐采纳,获得10
8秒前
落寞砖家发布了新的文献求助10
9秒前
小手冰凉完成签到 ,获得积分10
9秒前
蓝调爱科研应助遗忘采纳,获得10
9秒前
hhhhhh完成签到,获得积分10
11秒前
李清湛完成签到,获得积分10
11秒前
动漫大师发布了新的文献求助10
11秒前
心肝宝贝甜蜜饯完成签到,获得积分10
12秒前
CyrusSo524应助田里一把叉采纳,获得10
13秒前
打打应助小医采纳,获得10
13秒前
13秒前
信仰完成签到,获得积分10
13秒前
14秒前
l玖应助鼻涕泡采纳,获得10
15秒前
33完成签到,获得积分20
15秒前
Meidina发布了新的文献求助10
16秒前
xinyingking完成签到,获得积分10
16秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816874
求助须知:如何正确求助?哪些是违规求助? 3360257
关于积分的说明 10407382
捐赠科研通 3078228
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767924