Synergistic Integration of Physical Embedding and Machine Learning Enabling Precise and Reliable Force Field

计算机科学 嵌入 领域(数学) 力场(虚构) 人工智能 纳米技术 人机交互 数据科学 材料科学 数学 纯数学
作者
Lifeng Xu,Jian Jiang
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.4c00618
摘要

Machine-learning force fields have achieved significant strides in accurately reproducing the potential energy surface with quantum chemical accuracy. However, this approach still faces several challenges, e.g., extrapolating to uncharted chemical spaces, interpreting long-range electrostatics, and mapping complex macroscopic properties. To address these issues, we advocate for a synergistic integration of physical principles and machine learning techniques within the framework of a physically informed neural network (PINN). This approach involves incorporating physical knowledge into the parameters of the neural network, coupled with an efficient global optimizer, the Tabu-Adam algorithm, proposed in this work to augment optimization under strict physical constraint. We choose the AMOEBA+ force field as the physics-based model for embedding and then train and test it using the diethylene glycol dimethyl ether (DEGDME) data set as a case study. The results reveal a breakthrough in constructing a precise and noise-robust machine learning force field. Utilizing two training sets with hundreds of samples, our model exhibits remarkable generalization and density functional theory (DFT) accuracy in describing molecular interactions and enables a precise prediction of the macroscopic properties such as the diffusion coefficient with minimal cost. This work provides valuable insight into establishing a fundamental framework of the PINN force field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安详忆雪完成签到,获得积分10
刚刚
刚刚
Hello应助端庄的毛豆采纳,获得10
刚刚
独特靖巧发布了新的文献求助30
1秒前
1秒前
1秒前
2秒前
2秒前
科研通AI5应助夏夏采纳,获得10
3秒前
安详忆雪发布了新的文献求助10
3秒前
小姚姚完成签到,获得积分10
3秒前
克里斯就是逊啦完成签到,获得积分10
4秒前
海海完成签到,获得积分10
4秒前
大淼完成签到,获得积分10
4秒前
jnn发布了新的文献求助20
4秒前
zxh发布了新的文献求助10
4秒前
槑槑完成签到,获得积分10
5秒前
老实雨莲发布了新的文献求助10
5秒前
5秒前
6秒前
田様应助晚风采纳,获得30
6秒前
呆呆子发布了新的文献求助10
6秒前
成就丸子完成签到 ,获得积分10
7秒前
科研废物发布了新的文献求助10
7秒前
7秒前
7秒前
NexusExplorer应助Sissi采纳,获得30
8秒前
8秒前
兔兔要睡觉完成签到 ,获得积分10
9秒前
blue发布了新的文献求助30
9秒前
10秒前
鳗鱼饭饭发布了新的文献求助10
10秒前
10秒前
嘟嘟嘟完成签到,获得积分20
10秒前
赘婿应助777采纳,获得10
11秒前
11秒前
Lucas应助饱满小兔子采纳,获得30
11秒前
11秒前
jnn完成签到,获得积分20
11秒前
MoleMed发布了新的文献求助20
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054