Deep Learning-Based Device-Free Localization in Wireless Sensor Networks

计算机科学 无线传感器网络 无线 深度学习 无线传感器网络中的密钥分配 无线网络 人工智能 计算机网络 电信
作者
Osamah Abdullah,Hayder Al-Hraishawi,Symeon Chatzinotas
标识
DOI:10.1109/wcnc55385.2023.10118744
摘要

Location-based services are witnessing a rise in popularity owing to their key features of delivering personalized digital experience. The recent developments in wireless sensing techniques make the realization of device-free localization (DFL) feasible within wireless sensor network (WSN) architectures. The DFL is an emerging technology that utilizes radio signal information for detecting and positioning a passive movable target without attached devices. However, determining the characteristics of the massive raw signals and extracting meaningful discriminative features relevant to the localization are highly intricate tasks due to the different patterns associated with different locations. To overcome these issues, deep learning (DL) techniques can be utilized here owing to their remarkable performance gains in similar practical problems. In this direction, we propose a DFL framework consists of multiple convolutional neural network (CNN) layers along with deep autoencoders based on the restricted Boltzmann machines (RBM) to construct a convolutional deep belief network (CDBN) for features recognition and extracting. Each CNN layer has stochastic pooling to sample down the feature map and reduced the dimensions of the required data without losing important information. This dimensionality reduction can alleviate the heavy computation while ensuring precise localization. The proposed framework is validated using real experimental dataset. The results show that the proposed model is able to achieve a high accuracy of 98% with reduced data dimensions and low signal-to-noise ratios (SNRs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
烟花应助段玉杰采纳,获得10
2秒前
白兰鸽发布了新的文献求助10
3秒前
4秒前
啊啊啊发布了新的文献求助10
5秒前
眼睛大又蓝完成签到,获得积分10
8秒前
zhuzhu007发布了新的文献求助20
9秒前
100完成签到,获得积分10
10秒前
Wise完成签到,获得积分10
10秒前
14秒前
14秒前
14秒前
yowgo完成签到,获得积分10
15秒前
15秒前
16秒前
makabaka发布了新的文献求助10
17秒前
big龙发布了新的文献求助10
19秒前
清脆寻梅完成签到,获得积分10
19秒前
20秒前
郭梓韵发布了新的文献求助10
20秒前
swg发布了新的文献求助10
20秒前
传奇3应助Quinta采纳,获得10
21秒前
西西完成签到,获得积分10
21秒前
23秒前
懒癌晚期完成签到,获得积分10
24秒前
26秒前
勤劳的雨文完成签到,获得积分10
27秒前
博修发布了新的文献求助30
28秒前
嘻嘻嘻完成签到 ,获得积分10
29秒前
29秒前
段玉杰发布了新的文献求助10
30秒前
我是老大应助瑞曦采纳,获得10
33秒前
桃子完成签到,获得积分20
34秒前
啊啊啊发布了新的文献求助10
34秒前
36秒前
保持理智完成签到,获得积分10
37秒前
小蘑菇应助博修采纳,获得30
37秒前
38秒前
Quinta完成签到,获得积分10
39秒前
星海发布了新的文献求助10
39秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799078
求助须知:如何正确求助?哪些是违规求助? 3344805
关于积分的说明 10321507
捐赠科研通 3061233
什么是DOI,文献DOI怎么找? 1680100
邀请新用户注册赠送积分活动 806899
科研通“疑难数据库(出版商)”最低求助积分说明 763445