已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Solar photovoltaic power prediction using artificial neural network and multiple regression considering ambient and operating conditions

人工神经网络 光伏系统 线性回归 功率(物理) 风速 均方误差 近似误差 非线性回归 计算机科学 回归分析 统计 算法 气象学 机器学习 工程类 人工智能 数学 电气工程 物理 量子力学
作者
Abdelhak Keddouda,Razika Ihaddadène,Ali Boukhari,Abdelmalek Atia,Müslüm Arıcı,Nacer Lebbihiat,Nabila Ihaddadène
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:288: 117186-117186 被引量:62
标识
DOI:10.1016/j.enconman.2023.117186
摘要

This paper proposes artificial neural network (ANN) and regression models for photovoltaic modules power output predictions and investigates the effects of climatic conditions and operating temperature on the estimated output. The models use six days of experimental data creating a large dataset of 172,800 × 7. After data preprocessing, the appropriate attributes were selected as inputs and taken into account as features; solar irradiation, ambient air and module temperature, wind speed, and relative humidity, while the power generation as a target. In light of these data, the effect of training algorithm on the predictive performance of the ANN model was investigated. Results show that solar irradiation, ambient and module temperatures are key factors in predicting PV module power generation, as these variables are strongly correlated with PV power output. Moreover, the Levenberg-Marquardt algorithm was found to be the best training procedure. The ANN model demonstrated higher accuracy than the developed multiple linear regression models. However, the proposed Rational-Power-Law (RPL) and Power-Law (PL) models were able to capture the nonlinearity in the system, as assessed by coefficient of determination (R2) and the Mean Absolute Error (MAE), and successfully supplied a very high level of precision. The ANN, and both RPL and PL models provided comparable performance, attaining an R2 of 0.997, 0.998 and 0.996, and a MAE of 1.998, 1.156, and 1.242, respectively, when compared to experimental results. Furthermore, models proposed in this study were evaluated and compared with others available in literature and have demonstrated superior performance and better accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yiyi完成签到 ,获得积分10
3秒前
端庄洪纲发布了新的文献求助10
8秒前
9秒前
孙绪鹏发布了新的文献求助10
9秒前
10秒前
10秒前
领导范儿应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
12秒前
16秒前
陈腿毛发布了新的文献求助10
17秒前
科目三应助xxx采纳,获得10
17秒前
玉灵子发布了新的文献求助10
19秒前
玉灵子完成签到,获得积分10
24秒前
25秒前
王博士发布了新的文献求助10
28秒前
29秒前
zzz发布了新的文献求助10
30秒前
安静的飞珍完成签到,获得积分10
32秒前
32秒前
怕孤单的幼荷完成签到 ,获得积分10
33秒前
朴素的安双应助虎虎虎采纳,获得10
37秒前
goblue完成签到,获得积分10
38秒前
41秒前
战神林北完成签到,获得积分10
43秒前
飞走了完成签到 ,获得积分10
44秒前
睡到自然醒完成签到 ,获得积分10
46秒前
义气的元柏完成签到 ,获得积分10
47秒前
汉堡包应助熬夜的小王采纳,获得10
47秒前
49秒前
小脸红扑扑完成签到 ,获得积分10
52秒前
53秒前
54秒前
55秒前
鱼yu发布了新的文献求助10
56秒前
JDM完成签到 ,获得积分10
57秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843144
求助须知:如何正确求助?哪些是违规求助? 3385420
关于积分的说明 10540341
捐赠科研通 3105987
什么是DOI,文献DOI怎么找? 1710810
邀请新用户注册赠送积分活动 823771
科研通“疑难数据库(出版商)”最低求助积分说明 774264