已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Anomaly Detection Using Machine Learning in Hydrochemical Data From Hot Springs: Implications for Earthquake Prediction

地震预报 异常(物理) 异常检测 预测建模 机器学习 地震学 地质学 人工智能 计算机科学 数据挖掘 物理 凝聚态物理
作者
Ruijie Zhu,Fengtian Yang,Xiaocheng Zhou,Jiao Tian,Yongxian Zhang,Miao He,Jingchao Li,Jinyuan Dong,Ying Chun Li
出处
期刊:Water Resources Research [Wiley]
卷期号:60 (6)
标识
DOI:10.1029/2023wr034748
摘要

Abstract This study explores the potential of machine learning algorithms for earthquake prediction, utilizing fluid chemical anomaly data from hot springs. Six hot springs, located within an active fault zone along the southeastern coast of China, were carefully chosen as hydrochemical monitoring sites for an extended period of two and a half years. Using this data, a prediction model integrating six algorithms was developed to forecast M ≥ 5 earthquakes in Taiwan. The model's performance was validated against recorded earthquake events, and the factors influencing its predictive capability were analyzed. Our comprehensive analysis conclusively demonstrates the superiority of machine learning algorithms over traditional statistical methods for earthquake prediction. Additionally, including sampling time in the data sets significantly improves the model's predictive performance. However, it is important to note that the model's predictive performance varies across different hot spring and indicators type, highlighting the importance of identifying optimal indicators for specific scenarios. The model parameters, including the anomaly detection rate (P) and earthquake response time threshold (M), significantly impact the model's predictive capabilities. Therefore, adjustments are needed to optimize the model's performance for practical use. Despite limitations such as the inability to differentiate pre‐earthquake anomalies from post‐earthquake anomalies and pinpoint the precise location of earthquakes, this study successfully showcases the potential of machine learning algorithms in earthquake prediction, paving the way for further research and improved prediction methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dudu发布了新的文献求助10
2秒前
ycx发布了新的文献求助30
5秒前
Tristan完成签到 ,获得积分10
5秒前
oleskarabach发布了新的文献求助10
6秒前
简单天空完成签到,获得积分10
7秒前
8秒前
Lyuhng+1完成签到 ,获得积分10
10秒前
大溺完成签到 ,获得积分10
11秒前
简单天空发布了新的文献求助10
13秒前
17秒前
18秒前
云影清浅完成签到 ,获得积分10
19秒前
chaos完成签到 ,获得积分10
19秒前
汤米bb发布了新的文献求助10
20秒前
威武忆山完成签到 ,获得积分10
21秒前
大方元风完成签到 ,获得积分10
22秒前
23秒前
CodeCraft应助Zhijiuhenpi采纳,获得10
25秒前
很酷的妞子完成签到 ,获得积分10
26秒前
明亮紫易完成签到,获得积分10
26秒前
lzlz199829完成签到,获得积分20
27秒前
汤米bb完成签到,获得积分10
28秒前
17835152738完成签到,获得积分10
29秒前
AireenBeryl531应助库里强采纳,获得10
30秒前
lzlz199829发布了新的文献求助10
31秒前
光亮的半山完成签到,获得积分10
33秒前
善良的安卉完成签到,获得积分10
38秒前
39秒前
gao1发布了新的文献求助10
40秒前
852应助苏比努尔采纳,获得10
44秒前
Zhijiuhenpi发布了新的文献求助10
44秒前
dudu完成签到,获得积分20
48秒前
子月之路完成签到,获得积分10
49秒前
50秒前
鲍文启完成签到 ,获得积分10
51秒前
54秒前
gao1完成签到,获得积分20
54秒前
55秒前
56秒前
学术废物完成签到 ,获得积分10
56秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Fast method for calculating cutoff frequencies in single-mode fibres with arbitrary index profiles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833648
求助须知:如何正确求助?哪些是违规求助? 3376134
关于积分的说明 10491945
捐赠科研通 3095670
什么是DOI,文献DOI怎么找? 1704621
邀请新用户注册赠送积分活动 820054
科研通“疑难数据库(出版商)”最低求助积分说明 771785