Constructing High-order Functional Connectivity Networks with Temporal Information from fMRI Data

计算机科学 功能连接 人工智能 功能磁共振成像 订单(交换) 神经生理学 模式识别(心理学) 计算机视觉 神经科学 心理学 财务 经济
作者
Yingzhi Teng,Kai Wu,Jing Liu,Yifan Li,Xiangyi Teng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3412399
摘要

Conducting functional connectivity analysis on functional magnetic resonance imaging (fMRI) data presents a significant and intricate challenge. Contemporary studies typically analyze fMRI data by constructing high-order functional connectivity networks (FCNs) due to their strong interpretability. However, these approaches often overlook temporal information, resulting in suboptimal accuracy. Temporal information plays a vital role in reflecting changes in blood oxygenation level-dependent signals. To address this shortcoming, we have devised a framework for extracting temporal dependencies from fMRI data and inferring high-order functional connectivity among regions of interest (ROIs). Our approach postulates that the current state can be determined by the FCN and the state at the previous time, effectively capturing temporal dependencies. Furthermore, we enhance FCN by incorporating high-order features through hypergraph-based manifold regularization. Our algorithm involves causal modeling of the dynamic brain system, and the obtained directed FC reveals differences in the flow of information under different pattern. We have validated the significance of integrating temporal information into FCN using four real-world fMRI datasets. On average, our framework achieves 12% higher accuracy than non-temporal hypergraph-based and low-order FCNs, all while maintaining a short processing time. Notably, our framework successfully identifies the most discriminative ROIs, aligning with previous research, thereby facilitating cognitive and behavioral studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
果汁豆浆完成签到,获得积分10
1秒前
敏感夏烟发布了新的文献求助10
1秒前
JamesPei应助龙华之士采纳,获得10
2秒前
郭振鹏完成签到,获得积分10
4秒前
科研狗发布了新的文献求助10
5秒前
郭振鹏发布了新的文献求助10
6秒前
8秒前
万能图书馆应助hanahuang采纳,获得10
8秒前
9秒前
www123qe发布了新的文献求助10
10秒前
小小脸完成签到,获得积分10
12秒前
华贞完成签到,获得积分10
12秒前
安详靖柏完成签到 ,获得积分10
13秒前
CipherSage应助lwc采纳,获得30
13秒前
什么东西发布了新的文献求助20
14秒前
龙华之士发布了新的文献求助10
14秒前
缓慢笑柳完成签到,获得积分20
15秒前
16秒前
奋斗雅香完成签到 ,获得积分10
17秒前
17秒前
17秒前
hanahuang完成签到,获得积分20
18秒前
19秒前
UP完成签到,获得积分10
20秒前
蒋时晏应助科研通管家采纳,获得50
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
bkagyin应助科研通管家采纳,获得10
22秒前
MR_MA应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得10
22秒前
8R60d8应助科研通管家采纳,获得10
22秒前
22秒前
yar应助科研通管家采纳,获得10
23秒前
yar应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
MR_MA应助科研通管家采纳,获得10
23秒前
程星星应助科研通管家采纳,获得10
23秒前
蒋时晏应助科研通管家采纳,获得50
23秒前
8R60d8应助科研通管家采纳,获得10
23秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899796
求助须知:如何正确求助?哪些是违规求助? 3444418
关于积分的说明 10835011
捐赠科研通 3169431
什么是DOI,文献DOI怎么找? 1751105
邀请新用户注册赠送积分活动 846489
科研通“疑难数据库(出版商)”最低求助积分说明 789251