亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid data-driven method based on data preprocessing to predict the remaining useful life of lithium-ion batteries

希尔伯特-黄变换 数据预处理 主成分分析 人工神经网络 均方误差 计算机科学 算法 模式识别(心理学) 人工智能 数学 统计 白噪声 电信
作者
Weiwei Huo,Aobo Wang,Bing Lu,Yunxu Jia,Li Chen
出处
期刊:Journal of electrochemical energy conversion and storage [ASME International]
卷期号:: 1-15
标识
DOI:10.1115/1.4065862
摘要

Abstract The estimation of remaining useful life (RUL) for lithium-ion batteries is an essential part for battery management system (BMS). A hybrid method is presented which is combining principal component analysis (PCA), improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), sparrow search algorithm (SSA), Elman neural network (Elman-NN), and gaussian process regression (GPR) to forecast battery RUL. Firstly, in the data preprocessing stage, the PCA+ICEEMDAN algorithm is creatively proposed to extract features of capacity decay and fluctuation. The PCA method is used to reduce the dimensionality of the extracted indirect health indicators (HIs), and then the ICEEMDAN algorithm is introduced to decompose the fused HI sequence and actual capacity data into residuals and multiple Intrinsic mode functions (IMFs). Secondly, in the prediction stage, feature data is corresponded one to-one with the mixed model. The prediction models of SSA-Elman algorithm and GPR algorithm are established, with the SSA-Elman algorithm predicting the capacity decay trend and the GPR algorithm quantifying the uncertainty caused by the capacity regeneration phenomenon. The final prediction results are obtained by superimposing the two sets of prediction data, and the prediction error and RUL are calculated. The effectiveness of the proposed hybrid approach is validated by RUL prediction experiments on three kinds of batteries. The comparative experimental results indicate that the mean absolute error (MAE) and root mean square error (RMSE) of the presented prediction model for lithium-ion battery capacity are less than 0.7% and 1.0%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
9秒前
Alimove发布了新的文献求助10
12秒前
大模型应助Alimove采纳,获得30
22秒前
FashionBoy应助ZBQ采纳,获得10
33秒前
浮游应助zing采纳,获得10
34秒前
情怀应助爱妍采纳,获得10
44秒前
47秒前
ZBQ发布了新的文献求助10
51秒前
51秒前
57秒前
爱妍发布了新的文献求助10
1分钟前
1分钟前
1分钟前
爱妍完成签到,获得积分20
1分钟前
彭于晏应助study采纳,获得10
1分钟前
1分钟前
study完成签到,获得积分10
1分钟前
1分钟前
可爱的函函应助study采纳,获得10
1分钟前
1分钟前
study发布了新的文献求助10
1分钟前
2分钟前
study发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
hehe完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Huzhu应助科研通管家采纳,获得10
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
balko完成签到,获得积分10
3分钟前
3分钟前
3分钟前
完美世界应助阿巴采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488561
求助须知:如何正确求助?哪些是违规求助? 4587391
关于积分的说明 14413838
捐赠科研通 4518759
什么是DOI,文献DOI怎么找? 2476074
邀请新用户注册赠送积分活动 1461541
关于科研通互助平台的介绍 1434505