Identification of full-field wind loads on buildings using a mechanism-inspired recursive convolutional neural network with partial structural responses

鉴定(生物学) 风力工程 卷积神经网络 系统标识 水准点(测量) 领域(数学) 计算机科学 人工智能 物理 气象学 数据建模 地质学 植物 数学 纯数学 生物 大地测量学 数据库
作者
Fubo Zhang,Ying Lei,Lijun Liu,Jinshan Huang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (5)
标识
DOI:10.1063/5.0206423
摘要

Indirect identification approaches through structural responses have proven effective for wind load estimation in real-world engineering. Currently, methods for identifying wind loads mainly rely on theoretical inverse identification, with rare research based on the mapping relationship between structural responses and wind loads through machine learning. In this paper, a scheme for identifying full-field wind loads using a recursive convolutional neural network (CNN) inspired by physical mechanisms is proposed. The recursive form of the network, as well as the inspiration for its inputs and outputs, is inspired by the spatial correlation and the mapping relationship between wind loads and structural responses. Thus, the network inputs comprise a fusion of structural acceleration and inter-story displacement responses, while the network outputs represent the independent wind loads on structures. Notably, mismatch test is employed by the network, wherein the training and testing datasets originate from entirely different sources. Specifically, during training, Gaussian white noises that simulate wind loads are utilized, while real wind load data are used for testing. The generalization of the proposed scheme is demonstrated through the identification of full-field wind loads generated by different stationary or non-stationary wind spectra of the 76-story wind-excited benchmark building. Furthermore, the proposed scheme is validated by identifying the full-field wind loads of a 67-story shear wall structure with wind tunnel test data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JGchen发布了新的文献求助10
1秒前
123123发布了新的文献求助30
2秒前
llg发布了新的文献求助10
3秒前
打打应助迅速的八宝粥采纳,获得10
4秒前
pluto应助salvatore采纳,获得10
7秒前
7秒前
chen完成签到,获得积分10
7秒前
星辰大海应助欢城采纳,获得10
8秒前
大花卷完成签到,获得积分10
9秒前
10秒前
Ava应助llg采纳,获得10
11秒前
我是你爹完成签到,获得积分10
11秒前
12秒前
北辰发布了新的文献求助10
14秒前
xie完成签到,获得积分20
16秒前
17秒前
18秒前
mwang完成签到,获得积分10
21秒前
传奇3应助花花123采纳,获得10
21秒前
jackynl发布了新的文献求助10
23秒前
星辰大海应助十一采纳,获得10
25秒前
xie给xie的求助进行了留言
26秒前
情怀应助迅速的八宝粥采纳,获得10
27秒前
安详的沛菡完成签到,获得积分10
28秒前
明111完成签到 ,获得积分10
32秒前
33秒前
科研通AI5应助哈哈哈采纳,获得10
35秒前
摆哥完成签到,获得积分10
36秒前
Lamis完成签到 ,获得积分10
36秒前
热心又蓝完成签到,获得积分10
36秒前
梗梗发布了新的文献求助10
37秒前
37秒前
40秒前
科研通AI5应助西瓜刀采纳,获得10
41秒前
42秒前
自然涵易发布了新的文献求助10
42秒前
43秒前
852应助科研通管家采纳,获得10
43秒前
Orange应助科研通管家采纳,获得10
43秒前
CipherSage应助科研通管家采纳,获得10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780560
求助须知:如何正确求助?哪些是违规求助? 3326076
关于积分的说明 10225366
捐赠科研通 3041143
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799024
科研通“疑难数据库(出版商)”最低求助积分说明 758669