Prognosis prediction based on liver histopathological image via graph deep learning and transformer

计算机科学 人工智能 变压器 深度学习 模式识别(心理学) 图形 理论计算机科学 工程类 电气工程 电压
作者
J. W. Zhang,Zhanquan Sun,Kang Wang,Chaoli Wang,Shu-Qun Cheng,Yu Jiang,Qing Bai
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:161: 111653-111653 被引量:1
标识
DOI:10.1016/j.asoc.2024.111653
摘要

Liver cancer is one of the leading causes of cancer-related deaths globally. Accurately predicting the prognosis of liver cancer patients is crucial for improving their treatment and developing new anticancer drugs. However, analyzing whole slide images is time-consuming and labor-intensive for pathologists. Although deep learning methods can improve analysis efficiency, cancer prognosis prediction remains challenging due to the need for both histological features and context-aware representations to accurately infer patient survival probabilities. Several context-aware models based on graph neural networks have been proposed for weakly supervised deep learning. However, most of these methods extract WSI features using a classification network pretrained on ImageNet, which does not include cancer cell-level images. Additionally, most GNN-based methods employ a fixed number of graph convolutional layers, limiting their ability to learn multi-scale information. To address these limitations, we propose Multi-Trans-GACN, a context-aware parallel multi-scale GNN based on Transformers. Multi-Trans-GACN hierarchically aggregates instance-level histology features on different scales in the liver cancer microenvironment. A Transformer-based scale attention mechanism is utilized to combine the features extracted from different scales. We also propose a method that utilizes InceptionV3, pretrained on cellular-level liver cancer images, to construct graph structures for liver cancer images. We evaluated Multi-Trans-GACN on two liver cancer datasets. Compared to existing methods, our approach achieved significant improvements in the C-index by 5.3 and 2.50, demonstrating its superior performance in liver cancer prognosis prediction tasks. The code id available in https://github.com/z19991013/MTG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱邓邓完成签到 ,获得积分10
1秒前
ArkZ完成签到 ,获得积分10
1秒前
传统的大白完成签到,获得积分10
1秒前
csu_zs完成签到,获得积分10
1秒前
旧雨新知完成签到 ,获得积分0
1秒前
科研通AI5应助白昼学派采纳,获得10
3秒前
如此纠结完成签到,获得积分10
4秒前
zhenzhen发布了新的文献求助10
4秒前
丘比特应助韩hqf采纳,获得10
5秒前
Siavy关注了科研通微信公众号
8秒前
子羽完成签到,获得积分10
10秒前
11秒前
rofsc完成签到 ,获得积分10
11秒前
橘寄完成签到,获得积分10
12秒前
Re完成签到 ,获得积分10
12秒前
13秒前
袁融发布了新的文献求助10
14秒前
C·麦塔芬完成签到,获得积分10
16秒前
白昼学派完成签到,获得积分10
16秒前
和花花完成签到,获得积分10
17秒前
韩hqf发布了新的文献求助10
18秒前
19秒前
不吃芹菜完成签到,获得积分10
20秒前
20秒前
22秒前
shinvkuo发布了新的文献求助30
24秒前
123发布了新的文献求助10
24秒前
26秒前
姜小时完成签到,获得积分10
27秒前
gro_ele完成签到,获得积分10
28秒前
Siavy发布了新的文献求助10
29秒前
怕黑面包完成签到 ,获得积分10
30秒前
zhang完成签到 ,获得积分10
31秒前
maomao完成签到 ,获得积分10
32秒前
水木飞雪完成签到,获得积分10
34秒前
结实抽屉完成签到,获得积分10
36秒前
Wtony完成签到 ,获得积分10
40秒前
Sissi完成签到 ,获得积分10
42秒前
章鱼完成签到,获得积分20
42秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780938
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227091
捐赠科研通 3041639
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734