Advances in machine learning screening of food bioactive compounds

生化工程 计算机科学 人工智能 化学 计算生物学 食品科学 生物 工程类
作者
Yiyun Zhang,Xin Bao,Yiqing Zhu,Zijian Dai,Qun Shen,Yong Xue
出处
期刊:Trends in Food Science and Technology [Elsevier BV]
卷期号:150: 104578-104578 被引量:6
标识
DOI:10.1016/j.tifs.2024.104578
摘要

Food contains abundant bioactive compounds that play a crucial role in human health. However, conventional methods for screening food bioactive compounds (FBCs) are expensive, time-consuming, and labor-intensive. Machine learning (ML) techniques, offer an efficient and cost-effective means to screen potential bioactive compounds, but their application and research in the food field are limited. In order to facilitate the effective screening of FBCs and to provide researchers with valuable insights, this paper presents the process of constructing ML models, including data preparation, molecular representation, ML algorithms selection, and evaluation methods, and highlights the progress of ML in screening FBCs with different bioactivities in recent years. Furthermore, this paper puts forward the primary limitations and challenges and suggests future directions. The research on using ML for screening FBCs has made some progress, especially for peptides with antioxidant and antihypertensive activities, as well as non-peptidic compounds with hypoglycemic activity. Different limitations and challenges exist in establishing ML models for different bioactivities. To ensure high-quality ML models, each step of the modeling process needs to be carefully considered based on the actual situation. In the future, to further promote the application of ML in the food field, it is necessary to establish comprehensive databases of FBCs, improve the quality and quantity of datasets, enhance the interpretability of deep learning; integrate ML with other techniques; combine classification and regression models; comprehensively evaluate compounds from multiple aspects; and develop models that can predict multiple bioactivities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪的滑板应助牛芳草采纳,获得10
2秒前
宫旭尧完成签到,获得积分10
2秒前
希望天下0贩的0应助Jey采纳,获得10
2秒前
蜜HHH完成签到 ,获得积分10
4秒前
iwaljq发布了新的文献求助10
5秒前
满意的迎南完成签到 ,获得积分10
5秒前
Orange应助飘逸店员采纳,获得10
6秒前
yuyu发布了新的文献求助10
7秒前
刘晴晴发布了新的文献求助10
7秒前
力劈华山完成签到,获得积分10
8秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
nn应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得30
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
kuangkuangfa应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
12秒前
花城发布了新的文献求助20
13秒前
14秒前
Jey发布了新的文献求助10
16秒前
YANA完成签到,获得积分10
16秒前
田様应助Sene采纳,获得10
17秒前
18秒前
nyf发布了新的文献求助10
18秒前
飘逸店员发布了新的文献求助10
19秒前
猪大户应助亮皮鱼老大采纳,获得10
19秒前
19秒前
KY Mr.WANG完成签到,获得积分10
21秒前
奋进的熊完成签到,获得积分10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942868
求助须知:如何正确求助?哪些是违规求助? 3487974
关于积分的说明 11046209
捐赠科研通 3218565
什么是DOI,文献DOI怎么找? 1778987
邀请新用户注册赠送积分活动 864496
科研通“疑难数据库(出版商)”最低求助积分说明 799542