HD-LJP: A Hierarchical Dependency-based Legal Judgment Prediction Framework for Multi-task Learning

依赖关系(UML) 任务(项目管理) 计算机科学 人工智能 认知心理学 心理学 工程类 系统工程
作者
Yunong Zhang,Xiao Wei,Hang Yu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112033-112033 被引量:10
标识
DOI:10.1016/j.knosys.2024.112033
摘要

In real-world scenarios, multiple subtasks of legal judgment (such as law article, charge, and term of penalty) have strict task logical order and label topological relation, and their results influence and validate each other. However, most existing methods model them as simple classification problems, which ignores the logical and semantic constraints between subtasks. Besides, they mainly focus on the fact description for judgment results, and ignore the standard legal documents (i.e., the established law articles). To this end, we propose a Hierarchical Dependency-based Legal Judgment Prediction framework (HD-LJP), which integrates task judicial logic, label topological relation, and hierarchical semantics knowledge in legal text effectively. Specifically, HD-LJP employs consistency and distinction distillation to model label topological relation among multiple subtasks, and improve the differentiation of each subtask itself respectively. In addition, for simulating the judicial logic of human judges, we define logical dependencies between subtasks, and then utilize the results of intermediate subtasks to make auxiliary prediction of other subtasks. And, hierarchical semantics knowledge is fully integrated and applied in these two processes, which will profoundly affect the creditability and interpretability of the judgment results. The experimental results show that HD-LJP can improve the prediction performance of three LJP subtasks, especially in the term of penalty. Compared with the existing methods, the macro-F1 on CAIL-small is increased by 13.4%, and 6.9% on CAIL-big. In addition, through further case studies, this paper demonstrates that HD-LJP performs better for tail classes and confusing labels than the current SOTA R-former.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雨安完成签到,获得积分10
1秒前
考研小白发布了新的文献求助10
1秒前
河狸完成签到,获得积分10
2秒前
Chang驳回了乐乐应助
2秒前
2秒前
故意的火龙果完成签到,获得积分10
3秒前
3秒前
kitty发布了新的文献求助10
3秒前
vivian26完成签到,获得积分10
3秒前
4秒前
小阳完成签到,获得积分10
4秒前
科研小狗发布了新的文献求助30
4秒前
4秒前
X10230发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
小李发布了新的文献求助20
7秒前
番茄发布了新的文献求助10
8秒前
考研小白完成签到,获得积分10
8秒前
顺利的寄琴完成签到 ,获得积分10
8秒前
rushfuture发布了新的文献求助10
9秒前
幽默尔蓝完成签到,获得积分10
9秒前
斯文败类应助兴奋猫咪采纳,获得10
9秒前
完美世界应助兴奋猫咪采纳,获得10
10秒前
细心慕凝发布了新的文献求助10
10秒前
酷波er应助兴奋猫咪采纳,获得10
10秒前
ding应助X10230采纳,获得10
10秒前
下次见发布了新的文献求助10
10秒前
天天快乐应助xy采纳,获得10
10秒前
小蘑菇应助DG采纳,获得10
10秒前
11秒前
小帅发布了新的文献求助10
11秒前
小二郎应助奋斗映寒采纳,获得10
11秒前
12秒前
12秒前
闪闪发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712541
求助须知:如何正确求助?哪些是违规求助? 5210657
关于积分的说明 15267838
捐赠科研通 4864451
什么是DOI,文献DOI怎么找? 2611394
邀请新用户注册赠送积分活动 1561695
关于科研通互助平台的介绍 1518970