SlaugFL: Efficient Edge Federated Learning With Selective GAN-Based Data Augmentation

计算机科学 杠杆(统计) 边缘设备 人工智能 GSM演进的增强数据速率 机器学习 独立同分布随机变量 分布式计算 数据挖掘 操作系统 随机变量 数学 云计算 统计
作者
Jianqi Liu,Zhiwei Zhao,Xiangyang Luo,Pan Li,Geyong Min,Huiyong Li
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 11191-11208 被引量:13
标识
DOI:10.1109/tmc.2024.3397585
摘要

Federated Learning (FL) has been widely used to facilitate distributed and privacy-preserving machine learning in recent years. Different from centralized training that usually has independent and identically distributed (IID) distribution of all users' data, FL suffers from significant communication cost and model performance degradation due to the non-IID data from individual edge devices. Existing work calibrates the local models using a global anchor or sharing global data. However, these studies either assume that the central server has the global dataset or require participating devices to share raw data, which incurs additional communication costs and privacy concerns. In this paper, we propose SlaugFL , a novel selective GAN-based data augmentation scheme for communication-efficient edge FL, which selects representative devices to share specific local class prototypes with the central server for GAN model training and improves FL performance with the trained GAN. Specifically, on the server side, we generate diverse labeled candidate data with the help of powerful generative models (the stable diffusion model and ChatGPT). To ensure that the GAN-generated data possesses a similar domain to the devices' local data, we leverage these selected local class prototypes to pick desired GAN training samples from the labeled candidate data. On the device side, we propose a dual-calibration approach consisting of two calibration manners. Concretely, we augment devices' non-IID data with the trained GAN model, where devices utilize the trained GAN model to generate the IID dataset. Thus, the device's local model can be directly calibrated with the augmented data. With the generated IID data, we yield privacy-free (p-f) global class prototypes which can be employed to further calibrate devices' local models. Combining these two calibrations effectively improves devices' local models. Extensive experimental results show that SlaugFL can significantly reduce the communication cost (up to 52.49%) while achieving the same accuracy, compared to the state-of-the-art work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助岳岳欲试采纳,获得10
刚刚
刚刚
我是老大应助明夕采纳,获得10
1秒前
科研通AI6.1应助陌上之心采纳,获得10
1秒前
smottom应助哈哈采纳,获得10
1秒前
草原完成签到,获得积分10
1秒前
1秒前
芽芽完成签到,获得积分10
1秒前
1秒前
脑洞疼应助生科小笨蛋采纳,获得10
2秒前
2秒前
Akim应助ranlan采纳,获得10
2秒前
2秒前
smottom应助谨慎鸽子采纳,获得10
2秒前
Vin发布了新的文献求助10
2秒前
2秒前
3秒前
rrr发布了新的文献求助10
3秒前
3秒前
iamaanh完成签到,获得积分10
3秒前
大白应助Vicky采纳,获得20
4秒前
4秒前
liuyafei发布了新的文献求助10
4秒前
du完成签到 ,获得积分10
4秒前
xu发布了新的文献求助10
5秒前
大模型应助苏和杨采纳,获得10
5秒前
ningqing发布了新的文献求助10
5秒前
典雅的觅儿完成签到,获得积分10
5秒前
maofficer发布了新的文献求助10
6秒前
10完成签到,获得积分10
6秒前
6秒前
Qiao完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
LY123发布了新的文献求助10
7秒前
7秒前
sadasd完成签到,获得积分10
7秒前
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768975
求助须知:如何正确求助?哪些是违规求助? 5577609
关于积分的说明 15420006
捐赠科研通 4902764
什么是DOI,文献DOI怎么找? 2637914
邀请新用户注册赠送积分活动 1585802
关于科研通互助平台的介绍 1540949