Antimicrobial and antiviral properties of stainless steel enhanced by controlled silver nano-island deposition: A safe and sustainable by design approach

材料科学 纳米技术 沉积(地质) 冶金 纳米- 抗菌剂 化学工程 复合材料 工程类 有机化学 沉积物 生物 古生物学 化学
作者
Bharti Malvi,Ranga Teja Pidathala,Dipeshwari J. Shewale,Pramina Kumari Pandey,Nishaben Patel,Ranjit Kumar Dehury,Swagat Das,Manas Paliwal,Abhay Raj Singh Gautam,Abhijit Mishra,Virupakshi Soppinna,Superb K. Misra,Swaroop Chakraborty
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:33: 8644-8654
标识
DOI:10.1016/j.jmrt.2024.11.196
摘要

Stainless steel (SS), particularly SS316L, is extensively utilised across industries, from consumer products to biomedical applications, due to its superior mechanical and chemical properties. However, in critical settings such as healthcare, maintaining contamination-free surfaces is essential to reduce microbial and viral transmission. This study introduces a multifunctional approach by leveraging the antimicrobial potential of silver (Ag) nano-islands deposited on SS316L substrates. By varying the Ag coating thickness from 2.7 nm to 45.5 nm, a transition from discrete nano-islands to a continuous layer was achieved, influencing surface morphology and functionality. The formation of Ag nano-islands reduced surface hydrophilicity by 57% and increased surface roughness by 50%, enabling a controlled release of Ag ions and nanoparticles. This controlled release mechanism provides potent antimicrobial and antiviral effects with minimal silver usage, eliminating the need for full surface coverage. Stability tests confirmed that the nano-islands remained intact, retaining antimicrobial efficacy over time, proportional to the amount of Ag deposited. This Safe and Sustainable by design (SSbD) based nano-island approach offers a cost-effective, scalable, and efficient solution for antimicrobial surface modification, achieving significant microbial and viral inhibition while minimising silver use. Additionally, the user-activated release mechanism enhances surface longevity, presenting a sustainable and safe strategy for high-touch antimicrobial surfaces.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洛洛薇完成签到 ,获得积分10
刚刚
芝藕粥发布了新的文献求助30
刚刚
科研通AI6应助陈敏采纳,获得10
1秒前
1秒前
Ava应助hfgeyt采纳,获得10
1秒前
2秒前
自强不息完成签到,获得积分10
3秒前
ss发布了新的文献求助10
3秒前
aneao完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
美少叔叔完成签到,获得积分10
4秒前
小太阳发布了新的文献求助10
5秒前
5秒前
6秒前
千千万万是完成签到,获得积分10
6秒前
cetomacrogol完成签到,获得积分10
6秒前
6秒前
xiaodaiduyan发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
一笑看尽长安花完成签到,获得积分10
8秒前
Furina完成签到,获得积分10
9秒前
9秒前
华仔应助能干的问晴采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
BaoCure发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
慈祥的一刀完成签到,获得积分20
11秒前
bwh发布了新的文献求助10
11秒前
甜美的沅完成签到 ,获得积分10
11秒前
11秒前
12秒前
fanyingying发布了新的文献求助10
12秒前
檬沫熙发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660943
求助须知:如何正确求助?哪些是违规求助? 4836395
关于积分的说明 15092694
捐赠科研通 4819601
什么是DOI,文献DOI怎么找? 2579405
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492605