See Upload (Preprint)

预印本 上传 计算机科学 万维网
作者
Rebekka Schnepper,Noa Roemmel,Rainer Schaefert,Lena Lambrecht-Walzinger,Gunther Meinlschmidt
出处
期刊:JMIR mental health [JMIR Publications]
被引量:5
标识
DOI:10.2196/57986
摘要

Large language models (LLMs) are increasingly used in mental health, showing promise in assessing disorders. However, concerns exist regarding their accuracy, reliability, and fairness. Societal biases and underrepresentation of certain populations may impact LLMs. Because LLMs are already used for clinical practice, including decision support, it is important to investigate potential biases to ensure a responsible use of LLMs. Anorexia nervosa (AN) and bulimia nervosa (BN) show a lifetime prevalence of 1%-2%, affecting more women than men. Among men, homosexual men face a higher risk of eating disorders (EDs) than heterosexual men. However, men are underrepresented in ED research, and studies on gender, sexual orientation, and their impact on AN and BN prevalence, symptoms, and treatment outcomes remain limited. We aimed to estimate the presence and size of bias related to gender and sexual orientation produced by a common LLM as well as a smaller LLM specifically trained for mental health analyses, exemplified in the context of ED symptomatology and health-related quality of life (HRQoL) of patients with AN or BN. We extracted 30 case vignettes (22 AN and 8 BN) from scientific papers. We adapted each vignette to create 4 versions, describing a female versus male patient living with their female versus male partner (2 × 2 design), yielding 120 vignettes. We then fed each vignette into ChatGPT-4 and to "MentaLLaMA" based on the Large Language Model Meta AI (LLaMA) architecture thrice with the instruction to evaluate them by providing responses to 2 psychometric instruments, the RAND-36 questionnaire assessing HRQoL and the eating disorder examination questionnaire. With the resulting LLM-generated scores, we calculated multilevel models with a random intercept for gender and sexual orientation (accounting for within-vignette variance), nested in vignettes (accounting for between-vignette variance). In ChatGPT-4, the multilevel model with 360 observations indicated a significant association with gender for the RAND-36 mental composite summary (conditional means: 12.8 for male and 15.1 for female cases; 95% CI of the effect -6.15 to -0.35; P=.04) but neither with sexual orientation (P=.71) nor with an interaction effect (P=.37). We found no indications for main effects of gender (conditional means: 5.65 for male and 5.61 for female cases; 95% CI -0.10 to 0.14; P=.88), sexual orientation (conditional means: 5.63 for heterosexual and 5.62 for homosexual cases; 95% CI -0.14 to 0.09; P=.67), or for an interaction effect (P=.61, 95% CI -0.11 to 0.19) for the eating disorder examination questionnaire overall score (conditional means 5.59-5.65 95% CIs 5.45 to 5.7). MentaLLaMA did not yield reliable results. LLM-generated mental HRQoL estimates for AN and BN case vignettes may be biased by gender, with male cases scoring lower despite no real-world evidence supporting this pattern. This highlights the risk of bias in generative artificial intelligence in the field of mental health. Understanding and mitigating biases related to gender and other factors, such as ethnicity, and socioeconomic status are crucial for responsible use in diagnostics and treatment recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ihonest完成签到,获得积分0
2秒前
dreamdraver完成签到,获得积分10
2秒前
凉笙墨染完成签到,获得积分10
3秒前
RW乾发布了新的文献求助30
3秒前
625完成签到 ,获得积分10
3秒前
方正发布了新的文献求助10
4秒前
当女遇到乔完成签到 ,获得积分10
4秒前
小杭76完成签到,获得积分0
5秒前
冷傲的帽子完成签到 ,获得积分10
5秒前
小希完成签到 ,获得积分10
6秒前
心灵手巧完成签到 ,获得积分10
7秒前
8秒前
双碳小王子完成签到,获得积分10
9秒前
duktig完成签到 ,获得积分10
10秒前
我睡觉的时候不困完成签到 ,获得积分10
10秒前
JamesPei应助媛媛采纳,获得10
11秒前
玉鱼儿完成签到 ,获得积分10
11秒前
Orange应助JJ采纳,获得10
13秒前
雪儿完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
Ryuki完成签到 ,获得积分10
15秒前
方正完成签到,获得积分20
15秒前
peng完成签到 ,获得积分10
16秒前
夏姬宁静完成签到,获得积分10
18秒前
清秀不言完成签到 ,获得积分10
18秒前
zhouleiwang完成签到,获得积分10
19秒前
RW乾完成签到,获得积分10
19秒前
elebug完成签到,获得积分10
21秒前
浪麻麻完成签到 ,获得积分10
23秒前
NexusExplorer应助Justtry采纳,获得10
24秒前
123完成签到 ,获得积分10
25秒前
玉玲子LIN完成签到,获得积分10
26秒前
犹豫的若完成签到,获得积分10
26秒前
zjzjzjzjzj完成签到 ,获得积分10
27秒前
28秒前
mxm完成签到,获得积分10
28秒前
随机完成签到 ,获得积分10
28秒前
蓝桉完成签到 ,获得积分10
28秒前
彦卿完成签到 ,获得积分10
28秒前
英属维尔京群岛完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4871004
求助须知:如何正确求助?哪些是违规求助? 4161130
关于积分的说明 12902777
捐赠科研通 3916945
什么是DOI,文献DOI怎么找? 2150903
邀请新用户注册赠送积分活动 1169186
关于科研通互助平台的介绍 1073026