Stress Relaxation and Creep Response of Glassy Hydrogels with Dense Physical Associations

材料科学 蠕动 自愈水凝胶 应力松弛 放松(心理学) 压力(语言学) 复合材料 分子动力学 无定形固体 化学物理 热力学 高分子化学 计算化学 结晶学 心理学 化学 物理 社会心理学 哲学 语言学
作者
Hao Qiu,Ji Lin,Li Hou,Rui Xiao,Qiang Zheng,Zi Liang Wu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:17 (6): 9981-9991 被引量:8
标识
DOI:10.1021/acsami.4c22398
摘要

Various glassy hydrogels are developed by forming dense physical associations within the matrices, which exhibit forced elastic deformation and possess high stiffness, strength, and toughness. Here, the viscoplastic behaviors of the glassy hydrogel of poly(methacrylamide-co-methacrylic acid) are investigated by stress relaxation and creep measurements. We found that the characteristic time of stress relaxation of the glassy gel is much smaller than that of amorphous polymers. The varying hydrogen bond strength leads to a broad distribution of structural activation energies, which in turn affects the range of characteristic time. In the presence of water, the weak hydrogen bond associations are easily disrupted under applied strain, enhancing segmental mobility and reducing relaxation time in the preyield regime, while in the postyield regime, the relaxation time increases slightly since the chain stretching increases the energy barrier. In creep tests, the creep strain rate accelerates at the initial stage due to stress-activated segments and then decelerates as chains are extensively stretched. The stress required for structural activation during creep is much lower than the Young's modulus of the gel, reflecting the poor structural stability. To further analyze the underlying mechanism of the glassy gel, a micromechanical model is established based on an extension on shear transformation zone theory. By incorporating a state variable for hydrogen bond density, this model can capture the intricate mechanical responses of glassy gels. Our findings reveal that glassy hydrogels are far from the thermodynamic equilibrium state, exhibiting rapid segment activation under external loading. This work provides insights to the dynamics and structural stability of glassy materials and can promote the design and applications of tough hydrogels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzq完成签到,获得积分20
刚刚
怡然的盼柳完成签到,获得积分10
刚刚
rick3455发布了新的文献求助20
刚刚
平平完成签到,获得积分10
1秒前
李爱国应助zz采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
单纯面包发布了新的文献求助10
3秒前
Hello应助wefs采纳,获得10
4秒前
4秒前
Murray发布了新的文献求助10
4秒前
yaoqing完成签到,获得积分10
4秒前
小蘑菇应助DH采纳,获得10
5秒前
hannah完成签到,获得积分10
6秒前
大个应助Richard采纳,获得10
6秒前
6秒前
fang完成签到,获得积分10
7秒前
英姑应助沉默寄凡采纳,获得10
7秒前
jiang003完成签到,获得积分10
7秒前
7秒前
8秒前
英姑应助geold采纳,获得30
9秒前
威武鸽子发布了新的文献求助10
9秒前
怡然的怜烟应助yaoqing采纳,获得30
10秒前
10秒前
jiang003发布了新的文献求助10
11秒前
Ciel完成签到 ,获得积分10
11秒前
懦弱的冰岚完成签到,获得积分10
11秒前
认真盼夏发布了新的文献求助10
11秒前
CR7应助无情干饭崽采纳,获得20
11秒前
科研通AI6应助mirandaaa采纳,获得30
11秒前
12秒前
ding应助花花花花采纳,获得10
12秒前
12秒前
善学以致用应助Duolalala采纳,获得30
12秒前
orixero应助巴旦木采纳,获得10
13秒前
婷婷发布了新的文献求助10
13秒前
勤劳的访烟完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478095
求助须知:如何正确求助?哪些是违规求助? 4579824
关于积分的说明 14371025
捐赠科研通 4508054
什么是DOI,文献DOI怎么找? 2470401
邀请新用户注册赠送积分活动 1457273
关于科研通互助平台的介绍 1431249