Stress Relaxation and Creep Response of Glassy Hydrogels with Dense Physical Associations

材料科学 蠕动 自愈水凝胶 应力松弛 放松(心理学) 压力(语言学) 复合材料 分子动力学 无定形固体 化学物理 热力学 高分子化学 计算化学 结晶学 心理学 化学 物理 社会心理学 哲学 语言学
作者
Hao Qiu,Ji Lin,Li Hou,Rui Xiao,Qiang Zheng,Zi Liang Wu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:17 (6): 9981-9991
标识
DOI:10.1021/acsami.4c22398
摘要

Various glassy hydrogels are developed by forming dense physical associations within the matrices, which exhibit forced elastic deformation and possess high stiffness, strength, and toughness. Here, the viscoplastic behaviors of the glassy hydrogel of poly(methacrylamide-co-methacrylic acid) are investigated by stress relaxation and creep measurements. We found that the characteristic time of stress relaxation of the glassy gel is much smaller than that of amorphous polymers. The varying hydrogen bond strength leads to a broad distribution of structural activation energies, which in turn affects the range of characteristic time. In the presence of water, the weak hydrogen bond associations are easily disrupted under applied strain, enhancing segmental mobility and reducing relaxation time in the preyield regime, while in the postyield regime, the relaxation time increases slightly since the chain stretching increases the energy barrier. In creep tests, the creep strain rate accelerates at the initial stage due to stress-activated segments and then decelerates as chains are extensively stretched. The stress required for structural activation during creep is much lower than the Young's modulus of the gel, reflecting the poor structural stability. To further analyze the underlying mechanism of the glassy gel, a micromechanical model is established based on an extension on shear transformation zone theory. By incorporating a state variable for hydrogen bond density, this model can capture the intricate mechanical responses of glassy gels. Our findings reveal that glassy hydrogels are far from the thermodynamic equilibrium state, exhibiting rapid segment activation under external loading. This work provides insights to the dynamics and structural stability of glassy materials and can promote the design and applications of tough hydrogels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WSH发布了新的文献求助10
1秒前
时影发布了新的文献求助10
1秒前
英姑应助灰化土采纳,获得10
3秒前
11秒前
慕青应助研友_闾丘枫采纳,获得10
12秒前
聪慧易文完成签到,获得积分20
12秒前
xzy998应助愉快的楷瑞采纳,获得10
14秒前
实验耗材发布了新的文献求助10
17秒前
忆仙姿完成签到,获得积分10
18秒前
冰魂应助萨摩耶采纳,获得10
19秒前
20秒前
20秒前
22秒前
22秒前
英姑应助成太采纳,获得10
22秒前
kmzzy发布了新的文献求助10
23秒前
YH完成签到,获得积分10
25秒前
25秒前
林莹发布了新的文献求助10
25秒前
柠檬精翠翠完成签到 ,获得积分10
27秒前
小丸子发布了新的文献求助10
27秒前
胡子完成签到,获得积分10
28秒前
29秒前
小马甲应助实验耗材采纳,获得10
31秒前
刻苦的小虾米完成签到 ,获得积分10
31秒前
kmzzy完成签到,获得积分10
32秒前
33秒前
成太发布了新的文献求助10
37秒前
45秒前
小丸子完成签到,获得积分10
46秒前
科研通AI5应助sparkle采纳,获得10
53秒前
zhuminghui完成签到,获得积分10
57秒前
1分钟前
1分钟前
林莹发布了新的文献求助30
1分钟前
1分钟前
dududu发布了新的文献求助10
1分钟前
keock发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217326
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668059
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385