荧光
发色团
材料科学
超分子化学
荧光蛋白
超分子组装
绿色荧光蛋白
纳米技术
光化学
化学
分子
有机化学
光学
生物化学
物理
基因
作者
Yifei Ren,Chusen Huang
摘要
Supramolecular fluorescent materials with switchable behavior and induced luminescence enhancement are a new class of special materials for constructing fluorescence anti-counterfeiting materials. Since these materials are constructed by self-assembly through supramolecular host-guest interactions of non-covalent bonds, such fluorescent materials can regulate their optical properties through a reversible assembly-disassembly process. Inspired by the role of the β-barrel scaffold in activating strong fluorescence of a green fluorescent protein (GFP) chromophore, we designed a supramolecular system based on a novel GFP analogue (CA) and cucurbit[7]uril (CB[7]). CA molecules are encapsulated by CB[7] to form a 1 : 2 host-guest assembly, thereby the fluorescence brightness of CA can be tuned. The reversible regulation of fluorescence intensity was additionally realized by controlling the dynamic assembly-disassembly process in the presence of a higher binding competitor, amantadine hydrochloride. The CA-CB[7] system was successfully used for information anti-counterfeiting through the reversible fluorescence readout on A4 paper, which enables the GFP chromophore analogue and cucurbituril system to become a potential candidate for constructing intelligent information encryption and anti-counterfeiting materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI