Key Node Identification Method Based on Multilayer Neighbor Node Gravity and Information Entropy

雅卡索引 中心性 计算机科学 数据挖掘 节点(物理) 熵(时间箭头) 钥匙(锁) 数学 人工智能 聚类分析 物理 统计 计算机安全 量子力学
作者
Lidong Fu,Xin Ma,Zengfa Dou,Yun Bai,Xi Zhao
出处
期刊:Entropy [Multidisciplinary Digital Publishing Institute]
卷期号:26 (12): 1041-1041
标识
DOI:10.3390/e26121041
摘要

In the field of complex network analysis, accurately identifying key nodes is crucial for understanding and controlling information propagation. Although several local centrality methods have been proposed, their accuracy may be compromised if interactions between nodes and their neighbors are not fully considered. To address this issue, this paper proposes a key node identification method based on multilayer neighbor node gravity and information entropy (MNNGE). The method works as follows: First, the relative gravity of the nodes is calculated based on their weights. Second, the direct gravity of the nodes is calculated by considering the attributes of neighboring nodes, thus capturing interactions within local triangular structures. Finally, the centrality of the nodes is obtained by aggregating the relative and direct gravity of multilayer neighbor nodes using information entropy. To validate the effectiveness of the MNNGE method, we conducted experiments on various real-world network datasets, using evaluation metrics such as the susceptible-infected-recovered (SIR) model, Kendall τ correlation coefficient, Jaccard similarity coefficient, monotonicity, and complementary cumulative distribution function. Our results demonstrate that MNNGE can identify key nodes more accurately than other methods, without requiring parameter settings, and is suitable for large-scale complex networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助呆呆棵采纳,获得10
刚刚
三三完成签到,获得积分10
刚刚
jenningseastera应助同若离采纳,获得10
3秒前
思源应助秀丽的正豪采纳,获得10
6秒前
hhxhhx完成签到 ,获得积分20
6秒前
7秒前
coco完成签到,获得积分10
8秒前
8秒前
吴壮完成签到,获得积分0
8秒前
10秒前
10秒前
11秒前
12秒前
阿云发布了新的文献求助10
13秒前
TheDing完成签到,获得积分10
13秒前
FashionBoy应助xuexue0001采纳,获得10
14秒前
14秒前
RICK完成签到,获得积分10
16秒前
JW发布了新的文献求助10
16秒前
大力的飞莲完成签到,获得积分10
16秒前
JamesPei应助剪影改采纳,获得10
16秒前
cupid_lu发布了新的文献求助10
16秒前
woods发布了新的文献求助10
17秒前
我是站长才怪给achenghn的求助进行了留言
18秒前
SSSstriker完成签到,获得积分10
20秒前
20秒前
二一而已完成签到 ,获得积分10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
douKY应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
小雯钱来完成签到,获得积分10
22秒前
简单沛山完成签到,获得积分10
23秒前
sunshine完成签到,获得积分10
24秒前
24秒前
Orange应助gaochanglu采纳,获得10
25秒前
剪影改发布了新的文献求助10
25秒前
27秒前
凌宇完成签到 ,获得积分10
28秒前
脑洞疼应助Estella采纳,获得50
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783737
求助须知:如何正确求助?哪些是违规求助? 3328914
关于积分的说明 10239295
捐赠科研通 3044388
什么是DOI,文献DOI怎么找? 1670975
邀请新用户注册赠送积分活动 799997
科研通“疑难数据库(出版商)”最低求助积分说明 759172