Diffusion transformer model with compact prior for low-dose PET reconstruction

扩散 材料科学 变压器 核医学 计算机科学 物理 医学 电压 量子力学 热力学
作者
Bin Huang,Xubiao Liu,Fang Lei,Qiegen Liu,Bingxuan Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:70 (4): 045015-045015
标识
DOI:10.1088/1361-6560/adac25
摘要

Abstract Objective. Positron emission tomography (PET) is an advanced medical imaging technique that plays a crucial role in non-invasive clinical diagnosis. However, while reducing radiation exposure through low-dose PET scans is beneficial for patient safety, it often results in insufficient statistical data. This scarcity of data poses significant challenges for accurately reconstructing high-quality images, which are essential for reliable diagnostic outcomes. Approach. In this research, we propose a diffusion transformer model (DTM) guided by joint compact prior to enhance the reconstruction quality of low-dose PET imaging. In light of current research findings, we present a pioneering PET reconstruction model that integrates diffusion and transformer models for joint optimization. This model combines the powerful distribution mapping abilities of diffusion model with the capacity of transformers to capture long-range dependencies, offering significant advantages for low-dose PET reconstruction. Additionally, the incorporation of the lesion refining block and alternating direction method of multipliers enhance the recovery capability of lesion regions and preserves detail information, solving blurring problems in lesion areas and texture details of most deep learning frameworks. Main results . Experimental results validate the effectiveness of DTM in reconstructing low-dose PET image quality. DTM achieves state-of-the-art performance across various metrics, including PSNR, SSIM, NRMSE, CR, and COV, demonstrating its ability to reduce noise while preserving critical clinical details such as lesion structure and texture. Compared with baseline methods, DTM delivers best results in denoising and lesion preservation across various low-dose levels, including 10%, 25%, 50%, and even ultra-low-dose level such as 1%. DTM shows robust generalization performance on phantom and patient datasets, highlighting its adaptability to varying imaging conditions. Significance . This approach reduces radiation exposure while ensuring reliable imaging for early disease detection and clinical decision-making, offering a promising tool for both clinical and research applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hebhm发布了新的文献求助10
1秒前
2秒前
妇产科医生完成签到 ,获得积分10
3秒前
mufulee完成签到,获得积分10
3秒前
wjswift完成签到,获得积分10
3秒前
优雅的沛春完成签到 ,获得积分10
7秒前
可爱邓邓完成签到 ,获得积分10
11秒前
hhllhh完成签到,获得积分10
11秒前
13秒前
小文殊完成签到 ,获得积分10
14秒前
安详凡完成签到 ,获得积分10
18秒前
luffy完成签到 ,获得积分10
23秒前
YZJing完成签到,获得积分10
23秒前
dong完成签到 ,获得积分10
24秒前
cdercder应助科研通管家采纳,获得20
26秒前
康复小白完成签到 ,获得积分10
29秒前
30秒前
mengmenglv完成签到 ,获得积分0
30秒前
高速旋转老沁完成签到 ,获得积分10
31秒前
33秒前
whuhustwit完成签到,获得积分10
34秒前
yi完成签到 ,获得积分10
35秒前
36秒前
zdx12324完成签到,获得积分10
36秒前
Lucas完成签到,获得积分10
37秒前
37秒前
lqh0211完成签到 ,获得积分20
37秒前
zhang完成签到 ,获得积分10
38秒前
健忘天曼发布了新的文献求助10
38秒前
熊雅完成签到,获得积分10
44秒前
45秒前
猫的毛完成签到 ,获得积分10
51秒前
April完成签到 ,获得积分10
51秒前
新世界的蜗牛完成签到,获得积分10
51秒前
成就绮琴完成签到 ,获得积分10
52秒前
相爱就永远在一起完成签到,获得积分10
59秒前
烟花应助健忘天曼采纳,获得10
1分钟前
1分钟前
Jimmy_King完成签到 ,获得积分10
1分钟前
研友_ngqjz8完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788357
求助须知:如何正确求助?哪些是违规求助? 3333722
关于积分的说明 10263216
捐赠科研通 3049630
什么是DOI,文献DOI怎么找? 1673639
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511