Research on Mine-Personnel Helmet Detection Based on Multi-Strategy-Improved YOLOv11

冗余(工程) 计算机科学 特征(语言学) 块(置换群论) 目标检测 数据挖掘 人工智能 模式识别(心理学) 哲学 语言学 几何学 数学 操作系统
作者
Lei Zhang,Zhipeng Sun,Hai Tao,Meng Wang,Weixun Yi
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (1): 170-170 被引量:1
标识
DOI:10.3390/s25010170
摘要

In the complex environment of fully mechanized mining faces, the current object detection algorithms face significant challenges in achieving optimal accuracy and real-time detection of mine personnel and safety helmets. This difficulty arises from factors such as uneven lighting conditions and equipment obstructions, which often lead to missed detections. Consequently, these limitations pose a considerable challenge to effective mine safety management. This article presents an enhanced algorithm based on YOLOv11n, referred to as GCB-YOLOv11. The proposed improvements are realized through three key aspects: Firstly, the traditional convolution is replaced with GSConv, which significantly enhances feature extraction capabilities while simultaneously reducing computational costs. Secondly, a novel C3K2_FE module was designed that integrates Faster_block and ECA attention mechanisms. This design aims to improve detection accuracy while also accelerating detection speed. Finally, the introduction of the Bi FPN mechanism in the Neck section optimizes the efficiency of multi-scale feature fusion and addresses issues related to feature loss and redundancy. The experimental results demonstrate that GCB-YOLOv11 exhibits strong performance on the dataset concerning mine personnel and safety helmets, achieving a mean average precision of 93.6%. Additionally, the frames per second reached 90.3 f·s−1, representing increases of 3.3% and 9.4%, respectively, compared to the baseline model. In addition, when compared to models such as YOLOv5s, YOLOv8s, YOLOv3 Tiny, Fast R-CNN, and RT-DETR, GCB-YOLOv11 demonstrates superior performance in both detection accuracy and model complexity. This highlights its advantages in mining environments and offers a viable technical solution for enhancing the safety of mine personnel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
如沐春风发布了新的文献求助10
2秒前
cfyoung完成签到,获得积分10
2秒前
3秒前
嗯哼应助自由采纳,获得10
3秒前
sube完成签到,获得积分10
4秒前
huhuhuuh发布了新的文献求助10
5秒前
5秒前
徐佳达发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
红红发布了新的文献求助10
7秒前
8秒前
标致幼菱完成签到,获得积分10
8秒前
Loki应助wu采纳,获得30
8秒前
CodeCraft应助过时的羽毛采纳,获得10
8秒前
共享精神应助如沐春风采纳,获得10
9秒前
9秒前
李健应助zxldylan采纳,获得10
9秒前
jiaming发布了新的文献求助10
10秒前
王春焦发布了新的文献求助30
10秒前
11秒前
12秒前
13秒前
killler发布了新的文献求助10
13秒前
啥也不会啊完成签到,获得积分20
13秒前
浮浮世世发布了新的文献求助10
14秒前
14秒前
夙念完成签到 ,获得积分10
15秒前
小畅发布了新的文献求助100
15秒前
15秒前
桐桐应助欣慰的颦采纳,获得10
16秒前
17秒前
量子星尘发布了新的文献求助30
17秒前
18秒前
18秒前
19秒前
DawnySun发布了新的文献求助20
19秒前
hannah发布了新的文献求助30
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073193
求助须知:如何正确求助?哪些是违规求助? 4293286
关于积分的说明 13378053
捐赠科研通 4114770
什么是DOI,文献DOI怎么找? 2253101
邀请新用户注册赠送积分活动 1257931
关于科研通互助平台的介绍 1190770