Research on Mine-Personnel Helmet Detection Based on Multi-Strategy-Improved YOLOv11

冗余(工程) 计算机科学 特征(语言学) 块(置换群论) 目标检测 数据挖掘 人工智能 模式识别(心理学) 哲学 语言学 几何学 数学 操作系统
作者
Lei Zhang,Zhipeng Sun,Hai Tao,Meng Wang,Weixun Yi
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (1): 170-170
标识
DOI:10.3390/s25010170
摘要

In the complex environment of fully mechanized mining faces, the current object detection algorithms face significant challenges in achieving optimal accuracy and real-time detection of mine personnel and safety helmets. This difficulty arises from factors such as uneven lighting conditions and equipment obstructions, which often lead to missed detections. Consequently, these limitations pose a considerable challenge to effective mine safety management. This article presents an enhanced algorithm based on YOLOv11n, referred to as GCB-YOLOv11. The proposed improvements are realized through three key aspects: Firstly, the traditional convolution is replaced with GSConv, which significantly enhances feature extraction capabilities while simultaneously reducing computational costs. Secondly, a novel C3K2_FE module was designed that integrates Faster_block and ECA attention mechanisms. This design aims to improve detection accuracy while also accelerating detection speed. Finally, the introduction of the Bi FPN mechanism in the Neck section optimizes the efficiency of multi-scale feature fusion and addresses issues related to feature loss and redundancy. The experimental results demonstrate that GCB-YOLOv11 exhibits strong performance on the dataset concerning mine personnel and safety helmets, achieving a mean average precision of 93.6%. Additionally, the frames per second reached 90.3 f·s−1, representing increases of 3.3% and 9.4%, respectively, compared to the baseline model. In addition, when compared to models such as YOLOv5s, YOLOv8s, YOLOv3 Tiny, Fast R-CNN, and RT-DETR, GCB-YOLOv11 demonstrates superior performance in both detection accuracy and model complexity. This highlights its advantages in mining environments and offers a viable technical solution for enhancing the safety of mine personnel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KYDD发布了新的文献求助10
刚刚
刚刚
brainxue完成签到,获得积分10
刚刚
1秒前
张张完成签到,获得积分10
1秒前
冰河发布了新的文献求助20
2秒前
华仔应助李书荣采纳,获得10
3秒前
小蜡笔发布了新的文献求助10
3秒前
CipherSage应助快乐小狗采纳,获得10
3秒前
大白发布了新的文献求助10
3秒前
YE发布了新的文献求助10
4秒前
4秒前
直击灵魂完成签到,获得积分10
4秒前
动漫大师发布了新的文献求助10
5秒前
Amiao应助跳跃的邪欢采纳,获得10
5秒前
songlf23发布了新的文献求助10
5秒前
贵老师关注了科研通微信公众号
5秒前
5秒前
ru完成签到 ,获得积分10
5秒前
小飞完成签到,获得积分10
5秒前
6秒前
SciGPT应助快乐的心情采纳,获得10
6秒前
DL完成签到,获得积分10
7秒前
OldAntique完成签到,获得积分10
7秒前
玛卡巴卡的石头完成签到,获得积分10
7秒前
东北信风完成签到,获得积分10
8秒前
深情安青应助念想采纳,获得10
8秒前
9秒前
9秒前
zx发布了新的文献求助10
10秒前
linci完成签到,获得积分10
10秒前
10秒前
西装大气发布了新的文献求助10
11秒前
14秒前
15秒前
cdercder应助呼呼兔采纳,获得10
15秒前
15秒前
yyyyyyyx应助HYD采纳,获得10
15秒前
大个应助tosuto house采纳,获得10
16秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790524
求助须知:如何正确求助?哪些是违规求助? 3335294
关于积分的说明 10274188
捐赠科研通 3051766
什么是DOI,文献DOI怎么找? 1674822
邀请新用户注册赠送积分活动 802870
科研通“疑难数据库(出版商)”最低求助积分说明 760956