材料科学
金属锂
电解质
锂(药物)
纳米-
快离子导体
纳米技术
固态
金属
热传导
锂离子电池的纳米结构
化学工程
电化学
复合材料
工程物理
电极
冶金
物理化学
内分泌学
化学
工程类
医学
作者
Chi Han,Huasen Shen,Mengjun Li,Yunan Tian,Yuxuan Chen,Xiaoxin Wu,Jiaqi Sun,Liwen Liu,Xuanxuan Zhang,Jian Tang,Yu He,Yuyu Li,Ming Xie,Zhaohuai Li
标识
DOI:10.1002/adfm.202523139
摘要
Abstract An ultrathin (15 µm) composite polymer solid‐state electrolyte is engineered by embedding a dual‐polymer matrix (PEO/PVDF‐HFP) and nano‐LATP particles within a negatively charged nanofiber scaffold (PPLNF). This architecture enables a nano‐confined synergistic conduction (NCSC) mechanism, which electrostatic repulsion from functionalized pore walls excludes TFSI − anions, while LATP promotes LiTFSI dissociation and chemically anchors anions via Lewis acid sites. This dual action localizes anions and elevates free lithium ion (Li⁺) concentration/mobility, while low‐crystallinity polymer segments synergize with the scaffold to form efficient Li⁺ transport channels. The PPLNF achieves high ionic conductivity (1.04 × 10 −3 S cm −1 at 25 °C), Li⁺ transference number (0.75), and electrochemical stability (>5.0 V). It demonstrates exceptional interfacial compatibility, dendrite‐free Li anode cycling over 1000 h, and a critical current density of 2.0 mA cm −2 . NCM811||PPLNF||Li full cells retain >90% capacity after 200 cycles. This work establishes NCSC as a new paradigm for designing high‐performance solid‐state electrolytes toward next‐generation lithium metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI