U-Bench: A Comprehensive Understanding of U-Net through 100-Variant Benchmarking

作者
Fenghe Tang,Chuang Dong,Wenxin Ma,Zikang Xu,Heqin Zhu,Zuokai Jiang,Rongsheng Wang,Yuhao Wang,Chen‐Xu Wu,S. Kevin Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2510.07041
摘要

Over the past decade, U-Net has been the dominant architecture in medical image segmentation, leading to the development of thousands of U-shaped variants. Despite its widespread adoption, there is still no comprehensive benchmark to systematically evaluate their performance and utility, largely because of insufficient statistical validation and limited consideration of efficiency and generalization across diverse datasets. To bridge this gap, we present U-Bench, the first large-scale, statistically rigorous benchmark that evaluates 100 U-Net variants across 28 datasets and 10 imaging modalities. Our contributions are threefold: (1) Comprehensive Evaluation: U-Bench evaluates models along three key dimensions: statistical robustness, zero-shot generalization, and computational efficiency. We introduce a novel metric, U-Score, which jointly captures the performance-efficiency trade-off, offering a deployment-oriented perspective on model progress. (2) Systematic Analysis and Model Selection Guidance: We summarize key findings from the large-scale evaluation and systematically analyze the impact of dataset characteristics and architectural paradigms on model performance. Based on these insights, we propose a model advisor agent to guide researchers in selecting the most suitable models for specific datasets and tasks. (3) Public Availability: We provide all code, models, protocols, and weights, enabling the community to reproduce our results and extend the benchmark with future methods. In summary, U-Bench not only exposes gaps in previous evaluations but also establishes a foundation for fair, reproducible, and practically relevant benchmarking in the next decade of U-Net-based segmentation models. The project can be accessed at: https://fenghetan9.github.io/ubench. Code is available at: https://github.com/FengheTan9/U-Bench.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
芋泥脑袋发布了新的文献求助50
刚刚
Jasper应助小巧的绿凝采纳,获得10
刚刚
yeye发布了新的文献求助10
1秒前
yin完成签到,获得积分10
1秒前
丘比特应助一一采纳,获得10
1秒前
黑猫发布了新的文献求助10
2秒前
2秒前
2秒前
面包树完成签到,获得积分10
2秒前
2秒前
深情安青应助勤恳的雨文采纳,获得10
2秒前
lbw发布了新的文献求助10
2秒前
2秒前
干净的以冬完成签到,获得积分10
3秒前
3秒前
式微发布了新的文献求助10
3秒前
3秒前
彩色的豌豆完成签到,获得积分10
4秒前
Princess完成签到,获得积分10
4秒前
爆米花应助hn_zhx采纳,获得10
4秒前
朵拉完成签到,获得积分10
4秒前
4秒前
丘比特应助echo采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
wade发布了新的文献求助10
5秒前
5秒前
飞快的从彤完成签到 ,获得积分20
5秒前
5秒前
Beebeeman关注了科研通微信公众号
5秒前
故笺发布了新的文献求助10
5秒前
6秒前
Su发布了新的文献求助10
6秒前
咖啡油條完成签到,获得积分10
6秒前
李健的小迷弟应助Polaris采纳,获得10
7秒前
lpc发布了新的文献求助10
7秒前
小小发布了新的文献求助10
7秒前
7秒前
7秒前
婧婧发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512952
求助须知:如何正确求助?哪些是违规求助? 4607328
关于积分的说明 14504621
捐赠科研通 4542888
什么是DOI,文献DOI怎么找? 2489221
邀请新用户注册赠送积分活动 1471256
关于科研通互助平台的介绍 1443264