已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic Procurement of New Products with Covariate Information: The Residual Tree Method

协变量 杠杆(统计) 计算机科学 树(集合论) 残余物 数学优化 产品(数学) 采购 运筹学 计量经济学 数学 算法 经济 数学分析 机器学习 管理 几何学
作者
Gah‐Yi Ban,Jérémie Gallien,Adam J. Mersereau
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:21 (4): 798-815 被引量:81
标识
DOI:10.1287/msom.2018.0725
摘要

Problem definition: We study the practice-motivated problem of dynamically procuring a new, short-life-cycle product under demand uncertainty. The firm does not know the demand for the new product but has data on similar products sold in the past, including demand histories and covariate information such as product characteristics. Academic/practical relevance: The dynamic procurement problem has long attracted academic and practitioner interest, and we solve it in an innovative data-driven way with proven theoretical guarantees. This work is also the first to leverage the power of covariate data in solving this problem. Methodology: We propose a new combined forecasting and optimization algorithm called the residual tree method and analyze its performance via epiconvergence theory and computations. Our method generalizes the classical scenario tree method by using covariates to link historical data on similar products to construct demand forecasts for the new product. Results: We prove, under fairly mild conditions, that the residual tree method is asymptotically optimal as the size of the data set grows. We also numerically validate the method for problem instances derived using data from the global fashion retailer Zara. We find that ignoring covariate information leads to systematic bias in the optimal solution, translating to a 6%–15% increase in the total cost for the problem instances under study. We also find that solutions based on trees using just two to three branches per node, which is common in the existing literature, are inadequate, resulting in 30%–66% higher total costs compared with our best solution. Managerial implications: The residual tree is a new and generalizable approach that uses past data on similar products to manage new product inventories. We also quantify the value of covariate information and of granular demand modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助轻松含双采纳,获得10
1秒前
Ericlee完成签到,获得积分20
2秒前
2秒前
3秒前
5秒前
wjw发布了新的文献求助10
5秒前
从容蘑菇发布了新的文献求助10
8秒前
万能图书馆应助跳跳狗采纳,获得10
11秒前
nysyty发布了新的文献求助10
12秒前
小马甲应助心无旁骛采纳,获得30
13秒前
陈炫铭应助科研通管家采纳,获得10
17秒前
Alex应助科研通管家采纳,获得20
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
爆米花应助mmm采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
pluto应助科研通管家采纳,获得10
17秒前
若雨凌风应助科研通管家采纳,获得20
17秒前
17秒前
17秒前
17秒前
xinyu完成签到,获得积分20
20秒前
21秒前
22秒前
23秒前
淡淡茉莉完成签到 ,获得积分10
24秒前
酷波er应助三五一十五采纳,获得10
27秒前
跳跳狗发布了新的文献求助10
27秒前
StonesKing发布了新的文献求助10
27秒前
wjw完成签到,获得积分10
31秒前
祈祈完成签到 ,获得积分10
33秒前
34秒前
Owen应助寒冷的踏歌采纳,获得30
34秒前
小莫完成签到,获得积分10
36秒前
幸福的雪枫完成签到 ,获得积分10
36秒前
37秒前
37秒前
岂曰无衣完成签到 ,获得积分10
40秒前
顾矜应助CY采纳,获得20
41秒前
XudongHou发布了新的文献求助10
43秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815407
求助须知:如何正确求助?哪些是违规求助? 3359175
关于积分的说明 10400609
捐赠科研通 3076830
什么是DOI,文献DOI怎么找? 1690026
邀请新用户注册赠送积分活动 813577
科研通“疑难数据库(出版商)”最低求助积分说明 767674