数学
分形
有界函数
贝塞尔函数
仿射变换
纯数学
边界(拓扑)
产品(数学)
类型(生物学)
数学分析
几何学
生态学
生物
作者
Luke G. Rogers,Marius Ionescu
标识
DOI:10.3934/cpaa.2014.13.2155
摘要
We give the first natural examples of Calderón-Zygmund operators in the theoryof analysis on post-critically finite self-similar fractals. This is achievedby showing that the purely imaginary Riesz and Bessel potentials on nestedfractals with $3$ or more boundary points are of this type. It follows thatthese operators are bounded on $L^{p}$, $1 < p < \infty$ and satisfy weak $1$-$1$bounds. The analysis may be extended to infinite blow-ups of these fractals,and to product spaces based on the fractal or its blow-up.
科研通智能强力驱动
Strongly Powered by AbleSci AI