Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors

自组装 纳米技术 制作 半导体 单晶 晶体生长 基质(水族馆)
作者
Wei Deng,Xiujuan Zhang,Huanli Dong,Jiansheng Jie,Xiuzhen Xu,Jie Liu,Le He,Lai Xu,Wenping Hu,Xiaohong Zhang
出处
期刊:Materials Today [Elsevier]
卷期号:24: 17-25 被引量:59
标识
DOI:10.1016/j.mattod.2018.07.018
摘要

Abstract Organic semiconductor single-crystal (OSSC)-based field-effect transistors (FETs) with high mobility and small device-to-device variation enable OSSCs to be adapted for practical applications. Research attention has recently been focused on developing simple ways of fabricating large-area OSSC arrays by means of solution-coating techniques. However, the lack of control of the meniscus front, where the nucleation and growth of organic crystals occur, leads to inconsistent crystal alignment and consequently induces large variation in device performance. Here, we propose a universal strategy, termed the channel-restricted meniscus self-assembly (CRMS) method to fabricate ultrahigh-mobility, uniform OSSC arrays. The microscale photoresist channels used in this method produce a confinement effect to reduce the size of the meniscus, enabling the homogeneous nucleation of OSSCs at the meniscus front. Meanwhile, the dip-coating process ensures consistent molecular packing in the OSSCs and thus guarantees their highly uniform electrical properties. Using 2,6-diphenylanthracene as an example, wafer-scale (>2 inch) OSSC arrays with very small size variations (10%) are successfully prepared, which is very difficult to achieve by using the previously reported methods. As a result, field-effect transistors (FETs) based on the OSSC arrays show a high average hole mobility of up to 30.3 cm2 V−1 s−1 with good uniformity among devices. This method is general for the growth of various OSSC arrays, facilitating the applications of OSSCs in large-area, high-performance organic electronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
罗_应助lihongjie采纳,获得10
1秒前
罗_应助lihongjie采纳,获得10
1秒前
微笑的千凡完成签到,获得积分10
3秒前
斯文败类应助图图采纳,获得10
3秒前
今后应助shangxinyu采纳,获得10
4秒前
Ava应助郭二采纳,获得10
5秒前
xxxgoldxsx发布了新的文献求助10
5秒前
yunna_ning完成签到 ,获得积分10
5秒前
Jerry完成签到,获得积分10
6秒前
黑魔仙完成签到,获得积分10
6秒前
7秒前
传奇3应助Open access采纳,获得10
8秒前
慕青应助PPFF采纳,获得10
8秒前
三连环发布了新的文献求助10
8秒前
可耐的青雪完成签到 ,获得积分10
8秒前
9秒前
菜菜发布了新的文献求助10
9秒前
彩虹绵绵冰应助愉快尔冬采纳,获得10
9秒前
10秒前
12秒前
12秒前
13秒前
13秒前
lili应助木棉采纳,获得10
15秒前
叶南松发布了新的文献求助10
15秒前
666发布了新的文献求助10
15秒前
小小完成签到 ,获得积分10
16秒前
16秒前
上官若男应助圆圆采纳,获得10
16秒前
17秒前
17秒前
万能图书馆应助PPFF采纳,获得10
18秒前
木头完成签到,获得积分10
18秒前
666完成签到 ,获得积分10
19秒前
飘逸的威完成签到,获得积分10
19秒前
coisini发布了新的文献求助10
19秒前
20秒前
newfat应助风秋杨采纳,获得10
20秒前
山南水北发布了新的文献求助10
20秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 1000
Essentials of thematic analysis 800
ANDA Litigation: Strategies and Tactics for Pharmaceutical Patent Litigators Second 版本 500
Exact Solutions of the Discrete Heat Conduction Equations 500
A labyrinthodont from the Lower Gondwana of Kashmir and a new edestid from the Permian of the Salt Range 500
The Commercialization of Pharmaceutical Patents in China (Asian Commercial, Financial and Economic Law and Policy series) 300
Rethinking Socialism Compass for a Sustainability Revolution Rethinking Sociology series Klaus Dörre 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2329281
求助须知:如何正确求助?哪些是违规求助? 2010235
关于积分的说明 5040179
捐赠科研通 1766965
什么是DOI,文献DOI怎么找? 885271
版权声明 555368
科研通“疑难数据库(出版商)”最低求助积分说明 471286