Combined Dual-Prediction Based Data Fusion and Enhanced Leak Detection and Isolation Method for WSN Pipeline Monitoring System

泄漏 无线传感器网络 实时计算 计算机科学 传输(电信) 传感器融合 管道(软件) 数据传输 分离(微生物学) 电力传输 聚变中心 管道运输 工程类 无线 人工智能 计算机网络 电信 电气工程 微生物学 认知无线电 程序设计语言 环境工程 生物
作者
Lei Yang,Qing Zhao
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 571-582 被引量:11
标识
DOI:10.1109/tase.2022.3163407
摘要

In a Wireless Sensor Networks (WSN) based fluid pipeline leak monitoring system, numerous sensors are deployed along the pipeline networks. A great amount of measurements are continuously transmitted from the sensor nodes to their corresponding sink nodes. The energy consumed on data transmission dominates the power depletion of a WSN system. To reduce the amount of data transmission and prolong the lifetime of WSN, in this paper, a Combined Dual-Prediction based Data Fusion (CDPDF) method is proposed. Transmissions are only triggered if the measurement is substantially different from the predicted value. Furthermore, unlike existing methods which establish the predictor by merely considering the measurements from a single sensor, the proposed CDPDF learns and updates the predictor by integrating measurements from multiple neighboring sensors, hence the spatial cross-correlation is taken into account and the prediction accuracy is significantly improved. In this paper, an Enhanced Leak Detection and Isolation (EnLDI) method is also proposed in which several important parameters, such as the friction factor and the pressure wave propagation speed, can be online updated, resulting in improvement of the leak localization accuracy. Experimental case studies are conducted. By employing the proposed CDPDF and EnLDI methods in pipeline networks monitoring, the accuracy of leak isolation is significantly increased with reduced data transmission demands. Note to Practitioners—This work delivers a hybrid scheme that combines machine learning based data fusion and transmission, with model-based leak detection and isolation. The work is motivated by the problem of high energy consumption on data transmission and poor leak diagnosis accuracy in WSN based pipeline networks monitoring system. To reduce the energy consumed during frequent transmissions among sensor nodes, in this paper, a machine learning based data fusion method is proposed which can eliminate most of the redundant transmissions. Among the investigated schemes, the Extreme Learning Machine (ELM) based predictor can not only achieve satisfactory prediction accuracy but also has low computational cost, hence it can be easily implemented in most of the embedded micro-controller systems in practice. At the base station of a WSN, in the leak diagnosis phase, traditional model-based methods employ the fixed model parameters which should be adjustable in different pressure and flow conditions etc. In this paper, an online model parameter estimation procedure is introduced and incorporated in the scheme designed to estimate the leak size and location, thus, the leak localization accuracy is significantly improved. Moreover, the algorithmic procedures, mathematical expressions, evaluation process and results are also provided for practical implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐的飞兰完成签到 ,获得积分10
3秒前
科研通AI5应助出水的芙蓉采纳,获得10
4秒前
5秒前
manforfull完成签到,获得积分10
7秒前
杨春雪完成签到,获得积分10
8秒前
受伤哈密瓜完成签到 ,获得积分10
9秒前
qizhixu发布了新的文献求助10
10秒前
Galaxee发布了新的文献求助10
10秒前
13秒前
lancer发布了新的文献求助30
16秒前
诺诺完成签到,获得积分10
17秒前
20秒前
21秒前
Luchy完成签到 ,获得积分10
23秒前
lancer完成签到,获得积分10
24秒前
拾壹发布了新的文献求助10
25秒前
余姓懒完成签到,获得积分10
25秒前
genesquared完成签到,获得积分10
38秒前
李爱国应助大橙子采纳,获得10
38秒前
40秒前
Epiphany发布了新的文献求助10
40秒前
落叶捎来讯息完成签到 ,获得积分10
42秒前
张宏宇发布了新的文献求助10
44秒前
46秒前
秀丽书南完成签到 ,获得积分10
46秒前
领导范儿应助Galaxee采纳,获得10
48秒前
小蘑菇应助科研通管家采纳,获得10
50秒前
我是老大应助科研通管家采纳,获得10
50秒前
50秒前
小蘑菇应助科研通管家采纳,获得10
50秒前
annafan应助科研通管家采纳,获得10
51秒前
共享精神应助科研通管家采纳,获得10
51秒前
丘比特应助科研通管家采纳,获得10
51秒前
爆米花应助科研通管家采纳,获得10
51秒前
打打应助科研通管家采纳,获得10
51秒前
香蕉觅云应助科研通管家采纳,获得10
51秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
51秒前
51秒前
芷兰丁香发布了新的文献求助10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777104
求助须知:如何正确求助?哪些是违规求助? 3322457
关于积分的说明 10210413
捐赠科研通 3037822
什么是DOI,文献DOI怎么找? 1666890
邀请新用户注册赠送积分活动 797849
科研通“疑难数据库(出版商)”最低求助积分说明 758044