化学
过氧化氢
纳米技术
分子
膜
组合化学
有机化学
生物化学
材料科学
作者
Xing Wang,Jing Wu,Rui Lv,Yurong Bai,Caixia Wang,Fan Zhang,Zhihong Liu
标识
DOI:10.1021/acs.analchem.1c05642
摘要
Bioinspired nanochannels that manipulate ion transport have shown great potential for understanding complex physiological processes. Herein, inspired by the gating function of the biological ion channels, we designed and constructed artificial hydrogen peroxide (H2O2)-activated nanochannels by decorating the inner pore surface with 4-(phenoxymethyl) benzeneboronic acid pinacol ester (PBAE). Benefiting from the specific hydrolysis reaction between H2O2 and PBAE in the confined nanochannels, the functionalized artificial nanochannels exhibited a highly selective and sensitive response toward H2O2. The system could switch between open/closed states in the presence/absence of H2O2 by the ionic current test. Meanwhile, comsol simulations were carried out to evidence the mechanism of hydrogen peroxide triggered regulation of ion transport by the nanochannels. It was found that the surface charge density of the nanochannels changed along with the addition of H2O2. Furthermore, based on the sensing strategy, the PBAE-functionalized nanochannel membrane was applied in the detection of H2O2 in the tumor microenvironment, which achieved highly selective distinguishing of cancerous cells from normal cells. This work provides a versatile method to construct bioinspired nanochannel-based platforms for detecting small reactive molecules and offers prospects for the application of disease diagnosis and prognosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI