亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Few-Shot Domain-Adaptive Anomaly Detection for Cross-Site Brain Images

人工智能 计算机科学 异常检测 模式识别(心理学) 功能磁共振成像 人类连接体项目 特征(语言学) 领域(数学分析) 异常(物理) 二元分类 机器学习 支持向量机 功能连接 心理学 神经科学 数学 物理 凝聚态物理 哲学 数学分析 语言学
作者
Jianpo Su,Hui Shen,Limin Peng,Dewen Hu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (3): 1819-1835 被引量:25
标识
DOI:10.1109/tpami.2021.3125686
摘要

Early screening is essential for effective intervention and treatment of individuals with mental disorders. Functional magnetic resonance imaging (fMRI) is a noninvasive tool for depicting neural activity and has demonstrated strong potential as a technique for identifying mental disorders. Due to the difficulty in data collection and diagnosis, imaging data from patients are rare at a single site, whereas abundant healthy control data are available from public datasets. However, joint use of these data from multiple sites for classification model training is hindered by cross-domain distribution discrepancy and diverse label spaces. Herein, we propose few-shot domain-adaptive anomaly detection (FAAD) to achieve cross-site anomaly detection of brain images based on only a few labeled samples. We introduce domain adaptation to mitigate cross-domain distribution discrepancy and jointly align the general and conditional feature distributions of imaging data across multiple sites. We utilize fMRI data of healthy subjects in the Human Connectome Project (HCP) as the source domain and fMRI images from six independent sites, including patients with mental disorders and demographically matched healthy controls, as target domains. Experiments showed the superiority of the proposed method compared with binary classification, traditional anomaly detection methods, and several recognized domain adaptation methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助manfullmoon采纳,获得10
16秒前
21秒前
41秒前
BowieHuang应助科研通管家采纳,获得10
44秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534299
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582560
捐赠科研通 4562573
什么是DOI,文献DOI怎么找? 2500245
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450962