AttentionDTA: drug-target binding affinity prediction by sequence-based deep learning with attention mechanism.

人工智能 计算机科学 机制(生物学) 推论 深度学习 机器学习 新颖性 药物开发 特征(语言学) 编码(内存) 亲缘关系 交互信息
作者
Qichang Zhao,Guihua Duan,Mengyun Yang,Zhongjian Cheng,Yaohang Li,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcbb.2022.3170365
摘要

The prediction of drug-target affinities (DTAs) is substantial in drug development. Recently, deep learning has made good progress in the prediction of DTAs. Although relatively effective, due to the black-box nature of deep learning, these models are less biologically interpretable. In this study, we proposed a deep learning-based model, named AttentionDTA, with attention mechanism. The novelty of our work is to use attention mechanism to focus on key subsequences which are important in drug and protein sequences when predicting its affinity. We use two separate one-dimensional Convolution Neural Networks to extract the semantic information of drug's SMILES string and protein's amino acid sequence. Furthermore, four different attention mechanisms are developed and embedded to our model to explore the relationship between drug features and protein features. We conduct extensive experiments to demonstrate that AttentionDTA can effectively extract protein features related to drug information and drug features related to protein information to better predict drug target affinities. By visualizing the attention weight in the model, we found that even if the information of the binding site was never input during the inference process, AttentionDTA can still effectively enhance the role of the protein feature at the target site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qazzzyy完成签到,获得积分10
刚刚
NMSL发布了新的文献求助10
刚刚
shenzz发布了新的文献求助10
1秒前
xyx完成签到,获得积分10
1秒前
2秒前
2秒前
溪水哗哗发布了新的文献求助10
3秒前
3秒前
科研通AI5应助dido采纳,获得10
4秒前
4秒前
烟花应助dudu采纳,获得10
4秒前
4秒前
蓝桥兰灯完成签到,获得积分10
5秒前
5秒前
5秒前
打打应助笨笨静槐采纳,获得10
5秒前
Megan发布了新的文献求助10
6秒前
曾经的贞完成签到,获得积分10
6秒前
zxc167完成签到,获得积分10
6秒前
英俊的铭应助shenyu采纳,获得10
6秒前
六沉发布了新的文献求助10
7秒前
7秒前
eternity136发布了新的文献求助10
7秒前
完美世界应助热情平凡采纳,获得10
8秒前
酷波er应助猪猪hero采纳,获得10
8秒前
游云应助yommi采纳,获得10
8秒前
Hello应助无限的绮晴采纳,获得10
9秒前
9秒前
MAIDANG发布了新的文献求助10
9秒前
QQLL完成签到,获得积分10
9秒前
Yuan应助火星上藏鸟采纳,获得10
9秒前
wufel2发布了新的文献求助10
10秒前
SYLH应助忧虑的代容采纳,获得10
10秒前
10秒前
11秒前
121314wld完成签到,获得积分10
11秒前
12秒前
123完成签到,获得积分10
12秒前
12秒前
zn315315发布了新的文献求助20
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786149
求助须知:如何正确求助?哪些是违规求助? 3331690
关于积分的说明 10252167
捐赠科研通 3047090
什么是DOI,文献DOI怎么找? 1672378
邀请新用户注册赠送积分活动 801270
科研通“疑难数据库(出版商)”最低求助积分说明 760110