Extracellular Secretion and Simple Purification of Bacterial Collagen from Escherichia coli

分泌物 溶解 细胞外 重组DNA 化学 生物化学 细胞外基质 大肠杆菌 细胞内 生物物理学 生物 基因
作者
Zahra Abdali,Max Renner-Rao,Amy Chow,Anqi Cai,Matthew J. Harrington,Noémie‐Manuelle Dorval Courchesne
出处
期刊:Biomacromolecules [American Chemical Society]
卷期号:23 (4): 1557-1568 被引量:6
标识
DOI:10.1021/acs.biomac.1c01191
摘要

Because of structural similarities with type-I animal collagen, recombinant bacterial collagen-like proteins have been progressively used as a source of collagen for biomaterial applications. However, the intracellular expression combined with current costly and time-consuming chromatography methods for purification makes the large-scale production of recombinant bacterial collagen challenging. Here, we report the use of an adapted secretion pathway, used natively byEscherichia colito secrete curli fibers, for extracellular secretion of the bacterial collagen. We confirmed that a considerable fraction of expressed collagen (∼70%) is being secreted freely into the extracellular medium, with an initial purity of ∼50% in the crude culture supernatant. To simplify the purification of extracellular collagen, we avoided cell lysis and used cross-flow filtration or acid precipitation to concentrate the voluminous supernatant and separate the collagen from impurities. We confirmed that the secreted collagen forms triple helical structures, using Sirius Red staining and circular dichroism. We also detected collagen biomarkers via Raman spectroscopy, further supporting that the recombinant collagen forms a stable triple helical conformation. We further studied the effect of the isolation methods on the morphology and secondary structure, concluding that the final collagen structure is process-dependent. Overall, we show that the curli secretion system can be adapted for extracellular secretion of the bacterial collagen, eliminating the need for cell lysis, which simplifies the collagen isolation process and enables a simple cost-effective method with potential for scale-up.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
武雨寒发布了新的文献求助10
2秒前
迷人的访梦完成签到,获得积分20
2秒前
酷波er应助受伤幻桃采纳,获得10
2秒前
3秒前
慕青应助wakao采纳,获得10
3秒前
LL发布了新的文献求助10
3秒前
4秒前
科研通AI5应助妮妮采纳,获得10
4秒前
zzz完成签到,获得积分10
5秒前
Master-wang发布了新的文献求助30
7秒前
大巴扎中专妹完成签到,获得积分20
7秒前
万能图书馆应助英勇曼安采纳,获得10
7秒前
7秒前
bkagyin应助ytx采纳,获得10
9秒前
默默雨竹发布了新的文献求助10
9秒前
9秒前
打打应助LiugQin采纳,获得10
9秒前
10秒前
Zzz应助叶子采纳,获得10
10秒前
10秒前
12秒前
wakao发布了新的文献求助10
12秒前
热心玉兰发布了新的文献求助10
14秒前
酷炫依白发布了新的文献求助10
15秒前
图南发布了新的文献求助30
15秒前
17秒前
上官若男应助懂得珍惜采纳,获得10
17秒前
专注秋尽完成签到 ,获得积分10
18秒前
奋斗平卉发布了新的文献求助10
19秒前
AQI完成签到,获得积分10
19秒前
nanami完成签到 ,获得积分10
19秒前
乐乐应助默默雨竹采纳,获得30
19秒前
大意的雨双完成签到 ,获得积分10
21秒前
妮妮发布了新的文献求助10
21秒前
搞科研的小李同学完成签到 ,获得积分10
21秒前
善学以致用应助韩凡采纳,获得10
21秒前
21秒前
22秒前
22秒前
syalonyui完成签到,获得积分10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800658
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328098
捐赠科研通 3062460
什么是DOI,文献DOI怎么找? 1680999
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627