清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Establishment of an Artificial Neural Network Model Using Immune-Infiltration Related Factors for Endometrial Receptivity Assessment

感受性 免疫系统 不育 子宫内膜 生物 男科 医学 计算生物学 怀孕 内科学 免疫学 遗传学
作者
Bohan Li,Hua Duan,Sha Wang,Jiajing Wu,Yazhu Li
出处
期刊:Vaccines [MDPI AG]
卷期号:10 (2): 139-139 被引量:6
标识
DOI:10.3390/vaccines10020139
摘要

A comprehensive clinical strategy for infertility involves treatment and, more importantly, post-treatment evaluation. As a component of assessment, endometrial receptivity does not have a validated tool. This study was anchored on immune factors, which are critical factors affecting embryonic implantation. We aimed at establishing novel approaches for assessing endometrial receptivity to guide clinical practice.Immune-infiltration levels in the GSE58144 dataset (n = 115) from GEO were analysed by digital deconvolution and validated by immunofluorescence (n = 23). Then, modules that were most associated with M1/M2 macrophages and their hub genes were selected by weighted gene co-expression network as well as univariate analyses and validated using the GSE5099 macrophage dataset and qPCR analysis (n = 19). Finally, the artificial neural network model was established from hub genes and its predictive efficacy validated using the GSE165004 dataset (n = 72).Dysregulation of M1 to M2 macrophage ratio is an important factor contributing to defective endometrial receptivity. M1/M2 related gene modules were enriched in three biological processes in macrophages: antigen presentation, interleukin-1-mediated signalling pathway, and phagosome acidification. Their hub genes were significantly altered in patients and associated with ribosomal, lysosomal, and proteasomal pathways. The established model exhibited an excellent predictive value in both datasets, with an accuracy of 98.3% and an AUC of 0.975 (95% CI 0.945-1).M1/M2 polarization influences endometrial receptivity by regulating three gene modules, while the established ANN model can be used to effectively assess endometrial receptivity to inform pregnancy and individualized clinical management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助whynot采纳,获得10
4秒前
as完成签到 ,获得积分10
15秒前
yumihuhu发布了新的文献求助10
16秒前
FashionBoy应助whynot采纳,获得10
22秒前
梅赛德斯奔驰完成签到,获得积分10
31秒前
33秒前
浮游应助科研通管家采纳,获得10
33秒前
33秒前
Nene发布了新的文献求助10
36秒前
谢陈完成签到 ,获得积分10
43秒前
Joceelyn完成签到 ,获得积分10
53秒前
54秒前
科研通AI6应助whynot采纳,获得10
1分钟前
老迟到的友桃完成签到 ,获得积分10
1分钟前
1分钟前
moon发布了新的文献求助10
1分钟前
1分钟前
阔达雨灵完成签到,获得积分10
1分钟前
yumihuhu完成签到 ,获得积分10
2分钟前
李志全完成签到 ,获得积分10
2分钟前
隐形曼青应助阔达雨灵采纳,获得10
2分钟前
小青椒应助Nene采纳,获得30
2分钟前
大个应助科研通管家采纳,获得10
2分钟前
3分钟前
阔达雨灵发布了新的文献求助10
3分钟前
3分钟前
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
3分钟前
ding应助虚心的绿茶采纳,获得10
4分钟前
淮安石河子完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
迷茫的一代完成签到,获得积分10
4分钟前
顾矜应助嗨好采纳,获得10
5分钟前
5分钟前
嗨好发布了新的文献求助10
5分钟前
5分钟前
5分钟前
heiseyoumo0228完成签到,获得积分20
5分钟前
量子星尘发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463468
求助须知:如何正确求助?哪些是违规求助? 4568149
关于积分的说明 14312553
捐赠科研通 4494213
什么是DOI,文献DOI怎么找? 2462187
邀请新用户注册赠送积分活动 1451093
关于科研通互助平台的介绍 1426441