Attention-Driven Appearance-Motion Fusion Network for Action Recognition

计算机科学 光流 人工智能 卷积神经网络 判别式 RGB颜色模型 运动(物理) 模式识别(心理学) 计算机视觉 钥匙(锁) 帧(网络) 块(置换群论) 图像(数学) 电信 计算机安全 数学 几何学
作者
Shaocan Liu,Xin Ma
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2573-2584 被引量:3
标识
DOI:10.1109/tmm.2022.3148588
摘要

Recent years have witnessed the popularity of using a two-stream architecture and attention mechanism for action recognition with videos. However, it is time-consuming to train two separate convolutional neural networks (ConvNets), especially with the complex attention mechanism. In this paper, we present a novel architecture, termed as Appearance-Motion Fusion Network (AMFNet), to learn efficient and robust action representation from RGB and optical flow data in an end-to-end manner. AMFNet is constructed by connecting a convolutional neural network with an appearance-motion fusion block (AMFB), whose goal is to incorporate appearance and motion streams into a unified framework driven by a cross-modality attention (CMA) mechanism. More specifically, the CMA only relies on optical flow data, which consists of a Key-Frame Adaptive Selection Module (KFASM) and an Optical-Flow-Driven Spatial Attention Module (OFDSAM). The former aims to adaptively identify the discriminative key frames from a sequence, while the latter is able to guide our networks to focus on the action-relevant regions of each frame. We explore two schemes for appearance and motion streams fusion in AMFB from hierarchical and comprehensive levels. The proposed AMFNet is extensively evaluated on five action recognition data sets, including HMDB-51, UCF-101, JHMDB, Penn and Kinetics-400. Compared to the state-of-the-art methods operated at RGB and optical flow, the experimental results validate that our AMFNet achieves a comparable performance with a pure 2D-Single-ConvNet design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
今后应助张越采纳,获得30
1秒前
2秒前
3秒前
大个应助幸福白昼采纳,获得10
4秒前
4秒前
周周完成签到 ,获得积分10
4秒前
4秒前
丘比特应助高数数采纳,获得10
6秒前
laz发布了新的文献求助10
6秒前
Thx发布了新的文献求助10
7秒前
8秒前
ho发布了新的文献求助10
8秒前
TWD发布了新的文献求助10
8秒前
mookie发布了新的文献求助10
8秒前
科研通AI5应助Wachlb采纳,获得10
8秒前
knight发布了新的文献求助10
9秒前
zhounini1989发布了新的文献求助10
10秒前
10秒前
11秒前
ilc完成签到,获得积分10
11秒前
WW发布了新的文献求助10
14秒前
Jasper应助mookie采纳,获得10
14秒前
厚颜无耻之人完成签到 ,获得积分10
15秒前
lllttt发布了新的文献求助10
15秒前
laz完成签到,获得积分10
16秒前
island_gyt应助汪汪队立大功采纳,获得20
16秒前
量子星尘发布了新的文献求助50
16秒前
17秒前
李文茂完成签到 ,获得积分10
18秒前
汉堡包应助zhnn采纳,获得10
19秒前
九琅发布了新的文献求助10
22秒前
rational发布了新的文献求助10
22秒前
香蕉觅云应助TWD采纳,获得10
23秒前
上官若男应助小舟采纳,获得10
23秒前
23秒前
andy完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089624
求助须知:如何正确求助?哪些是违规求助? 4304269
关于积分的说明 13413897
捐赠科研通 4129923
什么是DOI,文献DOI怎么找? 2261878
邀请新用户注册赠送积分活动 1265919
关于科研通互助平台的介绍 1200583