De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update

生成语法 深度学习 计算机科学 药物发现 人工智能 管道(软件) 机器学习 生成设计 对抗制 计算生物学 数据科学 生物信息学 生物 工程类 程序设计语言 公制(单位) 运营管理
作者
Eugene Lin,Chieh‐Hsin Lin,Hsien‐Yuan Lane
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (4): 761-774 被引量:32
标识
DOI:10.1021/acs.jcim.1c01361
摘要

Nowadays, machine learning and deep learning approaches are widely utilized for generative chemistry and computer-aided drug design and discovery such as de novo peptide and protein design, where target-specific peptide-based/protein-based therapeutics have been suggested to cause fewer adverse effects than the traditional small-molecule drugs. In light of current advancements in deep learning techniques, generative adversarial network (GAN) algorithms are being leveraged to a wide variety of applications in the process of generative chemistry and computer-aided drug design and discovery. In this review, we focus on the up-to-date developments for de novo peptide and protein design research using GAN algorithms in the interdisciplinary fields of generative chemistry, machine learning, deep learning, and computer-aided drug design and discovery. First, we present various studies that investigate GAN algorithms to fulfill the task of de novo peptide and protein design in the drug development pipeline. In addition, we summarize the drawbacks with respect to the previous studies in de novo peptide and protein design using GAN algorithms. Finally, we depict a discussion of open challenges and emerging problems for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
星辰大海应助罗园菲采纳,获得10
2秒前
zhang发布了新的文献求助10
3秒前
英俊的如霜完成签到,获得积分10
3秒前
fvsuar完成签到,获得积分10
4秒前
zpc发布了新的文献求助10
6秒前
华仔应助ZX0501采纳,获得10
6秒前
华仔应助客厅狂欢采纳,获得10
7秒前
liuz53完成签到,获得积分10
7秒前
赫连立果完成签到,获得积分10
7秒前
ding应助认真初之采纳,获得10
7秒前
philo发布了新的文献求助10
8秒前
脑洞疼应助整齐芷文采纳,获得10
8秒前
鲜艳的棒棒糖完成签到,获得积分10
8秒前
8秒前
踩踩踩发布了新的文献求助10
9秒前
爱吃草莓完成签到,获得积分10
9秒前
娃娃鱼完成签到,获得积分10
10秒前
10秒前
11应助路由采纳,获得20
10秒前
shimly0101xx完成签到,获得积分10
11秒前
嘤嘤怪发布了新的文献求助10
12秒前
金金完成签到,获得积分10
13秒前
丘比特应助muziyi采纳,获得10
13秒前
唠叨的文龙完成签到,获得积分10
14秒前
丘比特应助甜美的一笑采纳,获得10
15秒前
15秒前
自觉远山完成签到 ,获得积分10
16秒前
zl发布了新的文献求助10
16秒前
SciGPT应助srq采纳,获得10
17秒前
17秒前
畅快山兰完成签到,获得积分10
18秒前
adasdad完成签到 ,获得积分10
18秒前
18秒前
Song完成签到,获得积分10
19秒前
能干筝完成签到,获得积分10
19秒前
19秒前
xxxL发布了新的文献求助10
20秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938442
求助须知:如何正确求助?哪些是违规求助? 3484198
关于积分的说明 11027397
捐赠科研通 3214102
什么是DOI,文献DOI怎么找? 1776426
邀请新用户注册赠送积分活动 862669
科研通“疑难数据库(出版商)”最低求助积分说明 798531