材料科学
神经形态工程学
MNIST数据库
突触后电流
晶体管
电导
光电子学
长时程增强
脉搏(音乐)
突触
电容
计算机科学
人工神经网络
兴奋性突触后电位
电压
人工智能
神经科学
电气工程
抑制性突触后电位
物理
电极
工程类
受体
生物
化学
凝聚态物理
量子力学
生物化学
作者
Ojun Kwon,Se‐Young Oh,Heejeong Park,Soo-Hong Jeong,Woojin Park,Byungjin Cho
出处
期刊:Nanotechnology
[IOP Publishing]
日期:2022-02-11
卷期号:33 (21): 215201-215201
被引量:13
标识
DOI:10.1088/1361-6528/ac5444
摘要
The reliable conductance modulation of synaptic devices is key when implementing high-performance neuromorphic systems. Herein, we propose a floating gate indium gallium zinc oxide (IGZO) synaptic device with an aluminum trapping layer to investigate the correlation between its diverse electrical parameters and pattern recognition accuracy. Basic synaptic properties such as excitatory postsynaptic current, paired pulse facilitation, long/short term memory, and long-term potentiation/depression are demonstrated in the IGZO synaptic transistor. The effects of pulse tuning conditions associated with the pulse voltage magnitude, interval, duration, and cycling number of the applied pulses on the conductance update are systematically investigated. It is discovered that both the nonlinearity of the conductance update and cycle-to-cycle variation should be critically considered using an artificial neural network simulator to ensure the high pattern recognition accuracy of Modified National Institute of Standards and Technology (MNIST) handwritten digit images. The highest recognition rate of the MNIST handwritten dataset is 94.06% for the most optimized pulse condition. Finally, a systematic study regarding the synaptic parameters must be performed to optimize the developed synapse device.
科研通智能强力驱动
Strongly Powered by AbleSci AI