亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Prediction Models for Neurodevelopmental Outcome After Preterm Birth: A Scoping Review and New Machine Learning Evaluation Framework

机器学习 医学 人工智能 结果(博弈论) 人工神经网络 计算机科学 数学 数理经济学
作者
Menne R. van Boven,Celina E. Henke,Aleid G. Leemhuis,Mark Hoogendoorn,Anton H. van Kaam,Marsh Königs,Jaap Oosterlaan
出处
期刊:Pediatrics [American Academy of Pediatrics]
卷期号:150 (1) 被引量:17
标识
DOI:10.1542/peds.2021-056052
摘要

Outcome prediction of preterm birth is important for neonatal care, yet prediction performance using conventional statistical models remains insufficient. Machine learning has a high potential for complex outcome prediction. In this scoping review, we provide an overview of the current applications of machine learning models in the prediction of neurodevelopmental outcomes in preterm infants, assess the quality of the developed models, and provide guidance for future application of machine learning models to predict neurodevelopmental outcomes of preterm infants.A systematic search was performed using PubMed. Studies were included if they reported on neurodevelopmental outcome prediction in preterm infants using predictors from the neonatal period and applying machine learning techniques. Data extraction and quality assessment were independently performed by 2 reviewers.Fourteen studies were included, focusing mainly on very or extreme preterm infants, predicting neurodevelopmental outcome before age 3 years, and mostly assessing outcomes using the Bayley Scales of Infant Development. Predictors were most often based on MRI. The most prevalent machine learning techniques included linear regression and neural networks. None of the studies met all newly developed quality assessment criteria. Studies least prone to inflated performance showed promising results, with areas under the curve up to 0.86 for classification and R2 values up to 91% in continuous prediction. A limitation was that only 1 data source was used for the literature search.Studies least prone to inflated prediction results are the most promising. The provided evaluation framework may contribute to improved quality of future machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
noss发布了新的文献求助10
16秒前
50秒前
59秒前
NexusExplorer应助来这里了采纳,获得10
1分钟前
kbcbwb2002完成签到,获得积分10
1分钟前
1分钟前
来这里了发布了新的文献求助10
1分钟前
1分钟前
科研通AI5应助FLN采纳,获得10
2分钟前
2分钟前
Wcy发布了新的文献求助10
2分钟前
2分钟前
cuddly完成签到 ,获得积分10
2分钟前
小w发布了新的文献求助10
2分钟前
Wcy完成签到,获得积分10
2分钟前
Ava应助坚定的小海豚采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
yy完成签到,获得积分10
3分钟前
小w发布了新的文献求助10
3分钟前
3分钟前
3分钟前
FLN发布了新的文献求助10
3分钟前
手帕很忙完成签到,获得积分10
3分钟前
4分钟前
大气的无颜完成签到,获得积分10
4分钟前
不安映秋发布了新的文献求助10
4分钟前
英俊的铭应助不安映秋采纳,获得10
4分钟前
盛事不朽完成签到 ,获得积分10
4分钟前
用户完成签到,获得积分10
4分钟前
FLN完成签到,获得积分10
5分钟前
5分钟前
Pendragon完成签到,获得积分10
5分钟前
zhangzhang完成签到,获得积分10
5分钟前
嘻嘻嘻发布了新的文献求助10
5分钟前
5分钟前
zhangzhang发布了新的文献求助10
5分钟前
cjn发布了新的文献求助10
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780810
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226580
捐赠科研通 3041516
什么是DOI,文献DOI怎么找? 1669465
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758732