亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accurately Predicting circRNA-disease Associations Using Variational Graph Auto-encoders and LightGBM

计算机科学 人工智能 图形 模式识别(心理学) 理论计算机科学
作者
Siyuan Shen,Yurong Qian,Jingjing Zheng,Junyi Liu,Lei Deng
标识
DOI:10.1109/bibm52615.2021.9669467
摘要

Many studies have shown that circRNAs play essential roles in various biological processes. With the development of technology, the associations between circRNA and diseases have been discovered, and these associations will help diagnose and treat diseases. However, it is time-consuming and costly to detect the associations between circRNAs and diseases with the experimental methods. Therefore, it is necessary to develop a feasible and effective computational method for predicting circRNA-disease associations. In this paper, we propose a new computational framework called VLCDA to identify the potential circRNA-disease associations. Initially, we construct features by fusing circRNA expression profile features and circRNA protein-coding ability features, disease semantic features, circRNA and disease GIP Kernel features, and use VGAE to mine its deep latent features. Finally, we use the fusion features to train the LightGBM classifier and the trained LightGBM to identify the circRNA-disease associations. The main contribution of VLCDA is that we firstly add circRNA protein-coding ability feature to the circRNA-disease association prediction model. In addition, VLCDA uses variational graph auto-encoders to extract the latent features of circRNA-disease associations to improve the prediction model's accuracy further. VLCDA obtained the area under the ROC curve (AUC) scores of 0.9783 in 5-fold cross-validation. In addition, in the case studies, 16 of the top 20 circRNA-disease associations predicted by VLCDA have been confirmed by relevant literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
42秒前
domingo完成签到,获得积分10
1分钟前
Lexi完成签到 ,获得积分10
1分钟前
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
11111完成签到,获得积分20
2分钟前
2分钟前
11111发布了新的文献求助10
2分钟前
2分钟前
桐桐应助于慧中采纳,获得10
2分钟前
JrPaleo101完成签到,获得积分10
2分钟前
2分钟前
于慧中发布了新的文献求助10
3分钟前
XiYang完成签到,获得积分10
3分钟前
冉亦完成签到,获得积分10
3分钟前
顾矜应助我要发nature采纳,获得10
4分钟前
斯文败类应助ma采纳,获得10
4分钟前
4分钟前
ma发布了新的文献求助10
4分钟前
shw完成签到,获得积分10
4分钟前
obedVL完成签到,获得积分10
5分钟前
稳重的雨灵完成签到,获得积分10
5分钟前
5分钟前
在水一方应助可靠的寒风采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
科研通AI2S应助稳重的雨灵采纳,获得10
5分钟前
6分钟前
6分钟前
我要发nature完成签到,获得积分10
6分钟前
Hello应助我要发nature采纳,获得10
6分钟前
梁昊完成签到,获得积分10
6分钟前
彭于晏应助科研通管家采纳,获得10
6分钟前
顾矜应助科研通管家采纳,获得10
6分钟前
梁昊发布了新的文献求助10
6分钟前
欣喜眼神发布了新的文献求助10
7分钟前
7分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840784
求助须知:如何正确求助?哪些是违规求助? 3382680
关于积分的说明 10526315
捐赠科研通 3102551
什么是DOI,文献DOI怎么找? 1708888
邀请新用户注册赠送积分活动 822765
科研通“疑难数据库(出版商)”最低求助积分说明 773575