泽尼克多项式
正交化
正交基
六方晶系
正交多项式
波前
雅可比多项式
经典正交多项式
Gegenbauer多项式
光学
数学
纯数学
物理
组合数学
几何学
量子力学
结晶学
化学
作者
Virendra N. Mahajan,Guang-ming Dai
出处
期刊:Optics Letters
[The Optical Society]
日期:2006-07-25
卷期号:31 (16): 2462-2462
被引量:41
摘要
The problem of determining the orthonormal polynomials for hexagonal pupils by the Gram-Schmidt orthogonalization of Zernike circle polynomials is revisited, and closed-form expressions for the hexagonal polynomials are given. We show how the orthonormal coefficients are related to the corresponding Zernike coefficients for a hexagonal pupil and emphasize that it is the former that should be used for any quantitative wavefront analysis for such a pupil.
科研通智能强力驱动
Strongly Powered by AbleSci AI