Signature-Discovery Approach for Sample Matching of a Nerve-Agent Precursor Using Liquid Chromatography−Mass Spectrometry, XCMS, and Chemometrics

化学 色谱法 化学计量学 质谱法 液相色谱-质谱法 分析化学(期刊) 样品(材料)
作者
Carlos G. Fraga,Brian H. Clowers,Ronald J. Moore,Erika Zink
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:82 (10): 4165-4173 被引量:407
标识
DOI:10.1021/ac1003568
摘要

This report demonstrates the use of bioinformatic and chemometric tools on liquid chromatography-mass spectrometry (LC-MS) data for the discovery of trace forensic signatures for sample matching of ten stocks of the nerve-agent precursor known as methylphosphonic dichloride (dichlor). XCMS, a software tool primarily used in bioinformatics, was used to comprehensively search and find candidate LC-MS peaks in a known set of dichlor samples. These candidate peaks were down selected to a group of 34 impurity peaks. Hierarchal cluster analysis and factor analysis demonstrated the potential of these 34 impurities peaks for matching samples based on their stock source. Only one pair of dichlor stocks was not differentiated from one another. An acceptable chemometric approach for sample matching was determined to be variance scaling and signal averaging of normalized duplicate impurity profiles prior to classification by K-nearest neighbors. Using this approach, a test set of seven dichlor samples were all correctly matched to their source stock. The sample preparation and LC-MS method permitted the detection of dichlor impurities quantitatively estimated to be in the parts-per-trillion (w/w). The detection of a common impurity in all dichlor stocks that were synthesized over a 14-year period and by different manufacturers was an unexpected discovery. Our described signature-discovery approach should be useful in the development of a forensic capability to assist investigations following chemical attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晏晏发布了新的文献求助10
刚刚
Lionnn发布了新的文献求助10
1秒前
1秒前
ding应助Fu采纳,获得10
2秒前
2秒前
敏儿发布了新的文献求助10
2秒前
2秒前
张海桐发布了新的文献求助10
3秒前
accpeted应助酷酷含桃采纳,获得10
3秒前
hebilie发布了新的文献求助10
4秒前
4秒前
5秒前
CGBY完成签到 ,获得积分10
5秒前
6秒前
kangjie123应助zcydbttj2011采纳,获得10
6秒前
orixero应助creepppp采纳,获得10
6秒前
7秒前
xinlei2023发布了新的文献求助10
7秒前
8秒前
8秒前
言言发布了新的文献求助10
8秒前
joasuka完成签到,获得积分20
9秒前
田様应助科研通管家采纳,获得10
10秒前
jin发布了新的文献求助10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
10秒前
完美世界应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
科目三应助噜噜噜采纳,获得10
11秒前
11秒前
11秒前
11秒前
冰魂应助科研通管家采纳,获得20
11秒前
11秒前
红豆完成签到 ,获得积分10
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805912
求助须知:如何正确求助?哪些是违规求助? 3350817
关于积分的说明 10351267
捐赠科研通 3066685
什么是DOI,文献DOI怎么找? 1684088
邀请新用户注册赠送积分活动 809298
科研通“疑难数据库(出版商)”最低求助积分说明 765432