男性不育
无精子症
不育
医学
人口
人类遗传学
外显子组测序
病因学
精子无力症
基因检测
生物信息学
遗传学
生物
病理
基因
突变
怀孕
环境卫生
作者
Csilla Krausz,Antoni Riera‐Escamilla
标识
DOI:10.1038/s41585-018-0003-3
摘要
Male infertility is a multifactorial pathological condition affecting approximately 7% of the male population. The genetic landscape of male infertility is highly complex as semen and testis histological phenotypes are extremely heterogeneous, and at least 2,000 genes are involved in spermatogenesis. The highest frequency of known genetic factors contributing to male infertility (25%) is in azoospermia, but the number of identified genetic anomalies in other semen and aetiological categories is constantly growing. Genetic screening is relevant for its diagnostic value, clinical decision making, and appropriate genetic counselling. Anomalies in sex chromosomes have major roles in severe spermatogenic impairment. Autosome-linked gene mutations are mainly involved in central hypogonadism, monomorphic teratozoospermia or asthenozoospermia, congenital obstructive azoospermia, and familial cases of quantitative spermatogenic disturbances. Results from whole-genome association studies suggest a marginal role for common variants as causative factors; however, some of these variants can be important for pharmacogenetic purposes. Results of studies on copy number variations (CNVs) demonstrate a considerably higher CNV load in infertile patients than in normozoospermic men, whereas whole-exome analysis has proved to be a highly successful diagnostic tool in familial cases of male infertility. Despite such efforts, the aetiology of infertility remains unknown in about 40% of patients, and the discovery of novel genetic factors in idiopathic infertility is a major challenge for the field of androgenetics. Large, international, and consortium-based whole-exome and whole-genome studies are the most promising approach for the discovery of the missing genetic aetiology of idiopathic male infertility.
科研通智能强力驱动
Strongly Powered by AbleSci AI