Different Shades of Oxide: From Nanoscale Wetting Mechanisms to Contact Printing of Gallium-Based Liquid Metals

润湿 材料科学 氧化物 粘附 基质(水族馆) 表面能 纳米技术 接触角 微尺度化学 复合材料 冶金 数学 海洋学 地质学 数学教育
作者
Kyle Doudrick,Shanliangzi Liu,Eva Mutunga,Kate L. Klein,Viraj G. Damle,Kripa K. Varanasi,Konrad Rykaczewski
出处
期刊:Langmuir [American Chemical Society]
卷期号:30 (23): 6867-6877 被引量:242
标识
DOI:10.1021/la5012023
摘要

Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because, despite having surface tension 10 times higher than water, they strongly adhere to a majority of substrates. This unusually high adhesion is attributed to the formation of a thin oxide shell; however, its role in the adhesion process has not yet been established. In this work, we demonstrate that, dependent on dynamics of formation and resulting morphology of the liquid metal-substrate interface, GaInSn adhesion can occur in two modes. The first mode occurs when the oxide shell is not ruptured as it makes contact with the substrate. Because of the nanoscale topology of the oxide surface, this mode results in minimal adhesion between the liquid metal and most solids, regardless of substrate's surface energy or texture. In the second mode, the formation of the GaInSn-substrate interface involves rupturing of the original oxide skin and formation of a composite interface that includes contact between the substrate and pieces of old oxide, bare liquid metal, and new oxide. We demonstrate that in this latter mode GaInSn adhesion is dominated by the intimate contact between new oxide and substrate. We also show that by varying the pinned contact line length using varied degrees of surface texturing, the adhesion of GaInSn in this mode can be either decreased or increased. Lastly, we demonstrate how these two adhesion modes limit microcontact printing of GaInSn patterns but can be exploited to repeatedly print individual sub-200 nm liquid metal drops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助早川秋Akaiii采纳,获得10
刚刚
顾矜应助kalinda采纳,获得10
刚刚
慕青应助cccc采纳,获得10
1秒前
夏爽2023完成签到,获得积分10
1秒前
1秒前
bubu完成签到,获得积分10
1秒前
Yinbo完成签到,获得积分10
2秒前
ash发布了新的文献求助10
2秒前
靜心发布了新的文献求助10
3秒前
Dante发布了新的文献求助50
3秒前
以琳完成签到,获得积分10
3秒前
ww完成签到,获得积分10
4秒前
李健的小迷弟应助哼哼采纳,获得10
4秒前
4秒前
zhihe完成签到,获得积分10
5秒前
5秒前
大模型应助xqxqxqxqxqx采纳,获得10
5秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
没有蛀牙完成签到 ,获得积分20
8秒前
纳米粒子完成签到,获得积分10
8秒前
华仔应助鹤鸣采纳,获得10
9秒前
张丁完成签到,获得积分10
9秒前
彭于晏应助helloworld采纳,获得10
9秒前
希望天下0贩的0应助zhang@采纳,获得10
10秒前
华仔应助白桃采纳,获得10
10秒前
10秒前
yexu完成签到,获得积分10
10秒前
10秒前
10秒前
哈哈哈haha发布了新的文献求助10
10秒前
11秒前
奋斗绿旋完成签到,获得积分10
11秒前
含糊的冰夏完成签到,获得积分10
11秒前
Karrisa完成签到,获得积分10
12秒前
在水一方应助xiaowu采纳,获得10
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806134
求助须知:如何正确求助?哪些是违规求助? 3350986
关于积分的说明 10352268
捐赠科研通 3066831
什么是DOI,文献DOI怎么找? 1684153
邀请新用户注册赠送积分活动 809346
科研通“疑难数据库(出版商)”最低求助积分说明 765463