兰姆达
吸引子
跳跃
类型(生物学)
数学物理
数学
轨道(动力学)
物理
价值(数学)
数学分析
量子力学
统计
生态学
工程类
生物
航空航天工程
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2016-03-01
卷期号:21 (4): 1225-1236
被引量:7
标识
DOI:10.3934/dcdsb.2016.21.1225
摘要
In this article, we study the dynamic transition for the one dimensional generalized Kuramoto-Sivashinsky equation with periodic condition. It is shown that if the value of the dispersive parameter $\nu$ is strictly greater than $\nu^{\ast}$, then the transition is Type-I (continuous) and the bifurcated periodic orbit is an attractor as the control parameter $\lambda$ crosses the critical value $\lambda_0$. In the case where $\nu$ is strictly less than $\nu^{\ast}$, then the transition is Type-II (jump) and the trivial solution bifurcates to a unique unstable periodic orbit as the control parameter $\lambda$ crosses the critical value $\lambda_0$. The value of $\nu^{\ast}$ is also calculated in this paper.
科研通智能强力驱动
Strongly Powered by AbleSci AI