Bacteria and genetically modified bacteria as cancer therapeutics: Current advances and challenges

背景(考古学) 癌症 沙门氏菌 生物 细菌 基因工程 癌症研究 突变 肠沙门氏菌 细胞毒性T细胞 微生物学 医学 计算生物学 免疫学 基因 突变 体外 遗传学 古生物学
作者
Shreeram C. Nallar,Dihua Xu,Dhan V. Kalvakolanu
出处
期刊:Cytokine [Elsevier BV]
卷期号:89: 160-172 被引量:69
标识
DOI:10.1016/j.cyto.2016.01.002
摘要

Bacteria act as pro- or anti- tumorigenic agents. Whole bacteria or cytotoxic or immunogenic peptides carried by them exert potent anti-tumor effects in the experimental models of cancer. The use of attenuated microorganism(s) e.g., BCG to treat human urinary bladder cancer was found to be superior compared to standard chemotherapy. Although the phase-I clinical trials with Salmonella enterica serovar Typhimurium, has shown limited benefits in human subjects, a recent pre-clinical trial in pet dogs with tumors reported some subjects benefited from this treatment strain. In addition to the attenuated host strains derived by conventional mutagenesis, recombinant DNA technology has been applied to a few microorganisms that have been evaluated in the context of tumor colonization and eradication using mouse models. There is an enormous surge in publications describing bacterial anti-cancer therapies in the past 15years. Vectors for delivering shRNAs that target oncogenic products, express tumor suppressor genes and immunogenic proteins have been developed. These approaches have showed promising anti-tumor activity in mouse models against various tumors. These can be potential therapeutics for humans in the future. In this review, some conceptual and practical issues on how to improve these agents for human applications are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助aaaaaa采纳,获得10
1秒前
暖冬的向日葵完成签到,获得积分10
2秒前
希尔发布了新的文献求助10
3秒前
3秒前
wanci应助飞飞飞采纳,获得10
3秒前
yiding完成签到 ,获得积分10
3秒前
3秒前
17完成签到,获得积分10
4秒前
虚幻靖易完成签到,获得积分10
4秒前
4秒前
4秒前
MY2720完成签到,获得积分10
4秒前
666plus完成签到,获得积分10
5秒前
5秒前
坚定的琦完成签到 ,获得积分10
5秒前
孤独士晋发布了新的文献求助10
5秒前
爆米花发布了新的文献求助10
5秒前
5秒前
XiHuanChi完成签到,获得积分10
6秒前
复杂的新柔完成签到 ,获得积分10
6秒前
7秒前
天气好的话完成签到 ,获得积分10
7秒前
残幻完成签到,获得积分10
8秒前
9秒前
Rain发布了新的文献求助10
9秒前
LYL1120完成签到,获得积分10
9秒前
10秒前
烟花应助李兴起采纳,获得10
10秒前
闪闪绮露完成签到,获得积分10
10秒前
天明完成签到,获得积分10
10秒前
辅助成灾发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
乾坤完成签到,获得积分10
11秒前
研友_5ZlN6L发布了新的文献求助10
11秒前
12秒前
12秒前
不吃糖完成签到,获得积分10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834587
求助须知:如何正确求助?哪些是违规求助? 3377081
关于积分的说明 10496404
捐赠科研通 3096557
什么是DOI,文献DOI怎么找? 1705041
邀请新用户注册赠送积分活动 820414
科研通“疑难数据库(出版商)”最低求助积分说明 772031