数学
拉普拉斯算子
多重性(数学)
p-拉普拉斯算子
边值问题
拉普拉斯变换
操作员(生物学)
数学分析
非线性系统
拉普拉斯方程
椭圆算子
半椭圆算子
应用数学
微分算子
物理
化学
抑制因子
量子力学
转录因子
基因
生物化学
作者
Nguyễn Hoàng Lộc,Klaus Schmitt
标识
DOI:10.57262/die/1356019510
摘要
In 1981, Peter Hess established a multiplicity result for solutions of boundary-value problems for nonlinear perturbations of the Laplace operator. The sufficient conditions given were later shown to be also necessary by Dancer and the second author. In this paper, we show that similar (and slightly more general) results hold when the Laplace operator is replaced by the $p-$Laplacian. Some applications to singular problems are given, as well.
科研通智能强力驱动
Strongly Powered by AbleSci AI