Applying Deep DNA Sequencing to Common, Complex Pediatric Traits

医学 孟德尔遗传 疾病 呼吸窘迫 儿科 遗传学 基因 内科学 生物 外科
作者
John M. Dagle,Jeffrey C. Murray
出处
期刊:Pediatrics [American Academy of Pediatrics]
卷期号:130 (6): e1677-e1678 被引量:1
标识
DOI:10.1542/peds.2012-2870
摘要

The specific genetic factors contributing to the causes of complex pediatric diseases are gradually being identified through a combination of technological advances, advanced statistical methods, and large biorepositories with appropriate samples and data. These developments have the capacity to personalize diagnosis and treatment of the common complications faced by preterm infants. The article in this issue of Pediatrics by Wambach et al1 is illustrative of this transformation and was applied to respiratory distress syndrome (RDS), the most common respiratory morbidity associated with prematurity. The authors considered RDS as a complex disease with both genetic and environmental/developmental risk factors. By excluding infants of <34 weeks’ gestation, a sample cohort was studied that was enriched for genetic causes of RDS and depleted of some developmental risk factors. They examined several genes previously associated with Mendelian single-gene (recessive usually) contributors to RDS that may be severe even in the term neonate. They searched for heterozygotes of known mutations or more minor variants that would result in a less-extreme phenotype but still be significant contributors to RDS in the near-term infant. Their finding that ABCA3 mutations are overrepresented in preterm infants with RDS compared with those without RDS is consistent with a growing body of literature demonstrating that a non-Mendelian complex disease may be caused by alterations in the same gene responsible for a more severe syndromic, single-gene effect, presentation. Although complex traits are usually thought of as arising from the interplay of many genetic and environmental factors, each of small-effect, current work suggests that recently arising rare variants may individually have a substantial impact on a disease phenotype.2 These effects are driven by what is a presumably lower dose of a “genetic abnormality.” Although they focused on coding sequence variants to assist in determining causality by using functional modeling, the study strongly suggests that future studies should also focus on regulatory regions for ABCA3 where the protein structure may be intact but dosage altered. If these results are confirmed, it will allow for more accurate diagnosis and estimation of recurrences in subsequent pregnancies with perhaps altering plans for delivery hospital or intensity of monitoring of term or near-term infants for RDS after birth.Germline contributions to the inherited components of disease can involve searches for common single-nucleotide variants using genome-wide association, copy number variants using array technologies, or rare sequence variants using sequencing.3 The introduction of massively parallel sequencing technologies has enabled investigators to move from sequencing a single human genome to sequencing substantial portions of the human genomes of thousands or even tens of thousands of individuals. This approach allows for the detection of rare variants causing Mendelian disorders and rare variants contributing to complex traits.4 These same technologies are now being applied to analysis of the human microbiome with similar broad implications for pediatric health and disease.5The work by Wambach et al1 takes advantage of a very deep biorepository of samples and illustrates the value of these resources for contributing to our knowledge of the causes of pediatric diseases. The use of such biorepositories, particularly those derived from residual samples from newborn screening programs, raises many complex ethical and social issues.6 Care must be taken with respect to the rights of individuals (and their progeny) to determine if and when their genetic identity is to be explored. On the other hand, the use of de-identified biological samples to further disease-specific research can foster important public health initiatives if carried out so there is minimal risk for exposing an individual or there are untoward consequences if such an exposure did occur. The results of Wambach et al1 demonstrate that biorepository samples can be used appropriately when careful attention has been paid to protecting the identities of specific individuals and working closely with families and state and federal agencies to ensure sound ethical use.The recent publications using cord blood or maternal serum obtained noninvasively to sequence the entire genome of a neonate fetus opens further doors for the application of sequencing technology.7,8,9 For example, prenatal screening for disorders now tested for in the newborn could be done for the entire range of Mendelian disorders and not just limited to the few dozen currently tested in which biochemical assays are available. This would provide for prebirth anticipatory informing of parents and therapy initiated immediately at birth. Specific environmental exposures could be limited in susceptible children. Such sequencing is imbued with ethical challenges as well.10 A paramount concern is the capacity of the scientists and clinicians to interpret the data in a way that is both understandable and useful to the patient/family and to find mechanisms to deal with the enormous amount of data that arise from deep-sequencing studies.11 Another major concern is how to manage and report data that are outside of what a primary goal of a sequencing effort might have been designed to accomplish. For example, unsuspected chromosomal anomalies or point be readily identified in genome-wide sequencing approaches. When (and how) to report such findings are currently topics of wide debate. Thus, substantial challenges remain in bringing these exciting technologies truly to the bedside. The future can be bright but only when coupled with existing resources, novel technologies, ethical approaches to the investigations, and bioinformatic approaches that enable the best and most appropriate interpretation of the data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc发布了新的文献求助10
1秒前
南西发布了新的文献求助10
1秒前
小王nwu发布了新的文献求助10
2秒前
SciGPT应助Ai_niyou采纳,获得10
2秒前
科研通AI6应助风兮雨采纳,获得10
2秒前
顾矜应助jianwuzhou采纳,获得50
2秒前
暮色晚钟完成签到,获得积分10
2秒前
3秒前
yidi01完成签到,获得积分10
3秒前
3秒前
谦让R完成签到,获得积分10
4秒前
科研通AI6应助kk采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
小飞鱼完成签到,获得积分10
7秒前
888发布了新的文献求助10
7秒前
Akim应助药神L采纳,获得10
7秒前
7秒前
小蚂蚁发布了新的文献求助10
8秒前
草莓收件箱发布了新的文献求助100
9秒前
帅气若风发布了新的文献求助10
9秒前
9秒前
汉堡包应助熊猫采纳,获得10
11秒前
123发布了新的文献求助10
11秒前
爆米花应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得30
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
Ian发布了新的文献求助10
12秒前
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
可靠映秋应助科研通管家采纳,获得10
12秒前
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594302
求助须知:如何正确求助?哪些是违规求助? 4679974
关于积分的说明 14812661
捐赠科研通 4646837
什么是DOI,文献DOI怎么找? 2534882
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469497