Effect of Al-Doping on the Electrochemical Performances of O3-Type Nanmc Cathode Material for Sodium-Ion Batteries

材料科学 电解质 阴极 电池(电) 锂(药物) 兴奋剂 电化学 离子 溶解 氧化还原 氧化物 过渡金属 化学工程 电极 无机化学 光电子学 化学 冶金 功率(物理) 工程类 热力学 物理化学 有机化学 内分泌学 物理 催化作用 医学 生物化学
作者
Vipin Kumar,S.K. Ghosh,Sushanta Biswas,Surendra K. Martha
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (2): 370-370
标识
DOI:10.1149/ma2020-012370mtgabs
摘要

The emergence of Lithium-ion technology as a primary power source has revolutionized the global electric vehicle battery market, the high abundance, uniform geological distribution and similar electrochemistry of sodium, making sodium-ion batteries (NIBs) a promising LIB supplement in the large-scale energy storage applications 1,2 . Layered sodium transition metal oxide of O3-NaMO 2 -type such as NaCoO 2 , NaMnO 2 , NaNiO 2, and NaFeO 2, etc. have been investigated to show reversible Na-ion insertion within the applied potential limit 2,3 . They suffer from their characteristic disadvantages, such as low redox potential of NaCoO 2 , complex phase transition of NaNiO 2 , electrolyte dissolution of Mn +2 of NaMnO 2 and rapid capacity fading of NaFeO 2 4,5 . Therefore, the strategy of cation mixing to develop the multi-metallic oxides has been explored well to utilize the synergistic effects of all metal ions. O3-type layered NaNi 0.5 Mn 0.3 Co 0.2 O 2 is considered as one of the most promising cathode materials for NIBs. O3-NaNi 0.5 Mn 0.3 Co 0.2 O 2 as cathode material for SIBs delivers a 1 st cycle capacity of 135 mAh g -1 with the 37% capacity fade at the end of 200 th cycle at C/10 current rate. NaNi 0.5 Mn 0.3 Co 0.2 O 2 , synthesized by using simple solution combustion method followed by thermal treatment delivers an initial discharge capacity of 135 mAh g -1 at C/10 rate, which indicates a reversible insertion of ~50% sodium. However, it loses 37% of the initial capacity after 200 cycles due to structural deformation during sodiation/de-sodiation process. The irreversible phase transition due to structural deformation leads to sluggish kinetics, rapid capacity fade, and poor rate performance; thereby limit its wide practical applications. To mitigate structural instability and rapid capacity fading, doping of main-group metals within transition metal layers is an effective strategy. 6-8 The partial substitution of Co 3+ (0.545 Å) by Al 3+ (0.535 Å) ions in the transition-metal layer to synthesize NaNi 0.5 Mn 0.3 Co 0.2-x Al x (x=0.01, 0.02, 0.05) by solution combustion technique is an effective strategy to address the issue of structural deformation and thus to improve the performance of NaNi 0.5 Mn 0.3 Co 0.2 O 2 . The O3-type structure of the synthesized material with the R-3m space group was confirmed from XRD analysis. The synthesized materials show morphology of hexagonal plate-like primary structures aggregated to form secondary clusters. The galvanostatic charge-discharge studies carried out at C/10 rate in the voltage range of 2.0-4.0 V shows that the composition with an overall 2% Al doping (x=0.02) delivers much better capacity retention (~28% improvement than pristine NaNMC) even after 100 cycles than the other compositions studied (1% (x=0.01) and 5% (x=0.05) Al doping). Moreover, the NaNi 0.5 Mn 0.3 Co 0.18 Al 0.02 O 2 shows the good capacity of around 80 mAhg -1 even at high C-rate of 5C rate, which is almost 72% of the initial capacity at C/10 rate. The improved electrochemical performance of the Al-substituted NaNMC is attributed to the enhanced structural stability of the sodium layered transition metal oxide achieved after the partial substitution of Co 3+ by Al 3+ ion. References 1. G. Zubi, R. Dufo-López, M. Carvalho and G. Pasaoglu, Renewable and Sustainable Energy Reviews, 89, 292 (2018). 2. N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, Chem. Rev., 114, 11636 (2014). 3. J. Y. Hwang, C. S Yoon, I. Belharouak, and Y.K Sun, J. Mater. Chem. A , 4 , 17952 (2016). 4. P. Vassilaras, A. J. Toumar, and G. Ceder, Electrochem. Commun., 38, 79 (2014). 5. M. H. Han, E. Gonzalo, G. Singh, and T. Rojo, Energy Environ. Sci., 8 , 81 (2015). 6. M. Sathiya, K. Hemalatha, K. Ramesha, J-M. Tarascon, and A. S. Prakash, Chem. Mater, 24 , 1846 (2012). 7. T. Hwang, J.-H. Lee, S. H. Choi, R.-G. Oh, D. Kim, M. Cho, W. Cho, and M.-S. Park, ACS Appl. Mater. Interfaces, 11 , 30894 (2019). 8. H. Wang, R. Gao, Z. Li, L. Sun, Z. Hu, and X. Liu, Inorg Chem ., 57, 5249 (2018).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡完成签到 ,获得积分10
刚刚
lyk2815完成签到,获得积分10
1秒前
001发布了新的文献求助10
1秒前
zzhangips完成签到,获得积分10
1秒前
塇塇完成签到,获得积分10
2秒前
2秒前
所所应助十一采纳,获得10
2秒前
2秒前
Cu完成签到,获得积分10
3秒前
浮游应助zhang5657采纳,获得10
3秒前
单忘幽发布了新的文献求助10
4秒前
马淑贤发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助30
5秒前
ACE发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
8秒前
火星上芹完成签到,获得积分20
8秒前
zhongbo发布了新的文献求助10
8秒前
Wakeupsn发布了新的文献求助10
9秒前
单忘幽完成签到,获得积分10
10秒前
hanch完成签到,获得积分20
11秒前
orixero应助ACE采纳,获得10
12秒前
FashionBoy应助luckly采纳,获得10
13秒前
斯文败类应助IT小师弟采纳,获得10
14秒前
铠甲勇士完成签到,获得积分10
14秒前
14秒前
乐乐应助和谐幻柏采纳,获得10
14秒前
17秒前
18秒前
18秒前
18秒前
yjj6809完成签到,获得积分10
19秒前
Ava应助yuanjie采纳,获得10
20秒前
川蜀帅气挖矿男完成签到,获得积分10
20秒前
夜莺应助Wakeupsn采纳,获得10
20秒前
21秒前
yanghuanyu完成签到 ,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5096447
求助须知:如何正确求助?哪些是违规求助? 4309168
关于积分的说明 13426309
捐赠科研通 4136267
什么是DOI,文献DOI怎么找? 2266010
邀请新用户注册赠送积分活动 1269252
关于科研通互助平台的介绍 1205492