Unsupervised fabric defect detection based on a deep convolutional generative adversarial network

人工智能 鉴别器 计算机科学 分割 残余物 模式识别(心理学) 编码器 像素 卷积神经网络 图像(数学) 计算机视觉 算法 电信 探测器 操作系统
作者
Guanghua Hu,Junfeng Huang,Qinghui Wang,Jingrong Li,Zhijia Xu,Xingbiao Huang
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:90 (3-4): 247-270 被引量:97
标识
DOI:10.1177/0040517519862880
摘要

Detecting and locating surface defects in textured materials is a crucial but challenging problem due to factors such as texture variations and lack of adequate defective samples prior to testing. In this paper we present a novel unsupervised method for automatically detecting defects in fabrics based on a deep convolutional generative adversarial network (DCGAN). The proposed method extends the standard DCGAN, which consists of a discriminator and a generator, by introducing a new encoder component. With the assistance of this encoder, our model can reconstruct a given query image such that no defects but only normal textures will be preserved in the reconstruction. Therefore, when subtracting the reconstruction from the original image, a residual map can be created to highlight potential defective regions. Besides, our model generates a likelihood map for the image under inspection where each pixel value indicates the probability of occurrence of defects at that location. The residual map and the likelihood map are then synthesized together to form an enhanced fusion map. Typically, the fusion map exhibits uniform gray levels over defect-free regions but distinct deviations over defective areas, which can be further thresholded to produce a binarized segmentation result. Our model can be unsupervisedly trained by feeding with a set of small-sized image patches picked from a few defect-free examples. The training is divided into several successively performed stages, each under an individual training strategy. The performance of the proposed method has been extensively evaluated by a variety of real fabric samples. The experimental results in comparison with other methods demonstrate its effectiveness in fabric defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子石榴完成签到,获得积分10
1秒前
思源应助包容溪灵采纳,获得10
2秒前
2秒前
FashionBoy应助WENDY采纳,获得10
5秒前
YUAN完成签到,获得积分10
5秒前
澍澍发布了新的文献求助20
5秒前
Owen应助遇见馅儿饼采纳,获得10
6秒前
一一发布了新的文献求助100
8秒前
Zachary完成签到 ,获得积分10
9秒前
10秒前
李木槿发布了新的文献求助10
11秒前
桐桐应助sun采纳,获得10
12秒前
微眠完成签到,获得积分10
12秒前
12秒前
jeff完成签到,获得积分10
13秒前
时尚的煎蛋完成签到,获得积分10
13秒前
暴躁的小鸽子完成签到,获得积分10
14秒前
15秒前
ZACK完成签到 ,获得积分10
15秒前
小白应助科研通管家采纳,获得20
17秒前
小白应助科研通管家采纳,获得20
17秒前
hhj发布了新的文献求助10
17秒前
卡卡西应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
小白应助科研通管家采纳,获得20
17秒前
卡卡西应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
cyx98应助科研通管家采纳,获得50
18秒前
lv应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
19秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802084
求助须知:如何正确求助?哪些是违规求助? 3347869
关于积分的说明 10335195
捐赠科研通 3063858
什么是DOI,文献DOI怎么找? 1682232
邀请新用户注册赠送积分活动 807941
科研通“疑难数据库(出版商)”最低求助积分说明 763969