Combining high hardness and crack resistance in mixed network glasses through high-temperature densification

材料科学 脆性 韧性 断裂韧性 复合材料 氧化物 结晶学 冶金 化学
作者
Saurabh Kapoor,Kacper Januchta,Randall E. Youngman,Xiaoju Guo,John C. Mauro,Mathieu Bauchy,Sylwester J. Rzoska,Michał Boćkowski,Lars R. Jensen,Morten M. Smedskjær
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:2 (6) 被引量:18
标识
DOI:10.1103/physrevmaterials.2.063603
摘要

Obtaining a combination of high toughness and strength is crucial for most structural materials, but unfortunately these tend to be mutually exclusive. The search for strong and tough damage-resistant materials has thus typically been based on achieving an acceptable compromise between hardness and crack resistance. Focusing here on brittle oxide glasses, we propose a new strategy for overcoming this conflict by identifying new structural motifs for designing hard and crack-resistant glasses. Specifically, we report that surprisingly there is no decrease in the densification contribution to deformation of a mixed network ${\mathrm{Al}}_{2}{\mathrm{O}}_{3}\ensuremath{-}{\mathrm{B}}_{2}{\mathrm{O}}_{3}\ensuremath{-}{\mathrm{P}}_{2}{\mathrm{O}}_{5}\ensuremath{-}\mathrm{Si}{\mathrm{O}}_{2}$ bulk glass following predensification of the glass at elevated temperature. Hitherto unique to this glass composition, the treatment reduces the residual stress during subsequent sharp contact loading, which in turn leads to a simultaneous increase in hardness and crack resistance. Based on structural characterization, we show that the more densified medium-range order of the hot compressed glass results in formation of certain structural states (e.g., nonring trigonal boron), which could not be reached through any composition or thermal path. This work thus shows that accessing such ``forbidden'' structural states through the identified densification at elevated temperatures offers a way forward to overcome the conflict of strength versus toughness in structural materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大头狸花发布了新的文献求助10
1秒前
1秒前
3秒前
周城发布了新的文献求助30
3秒前
3秒前
充电宝应助donwe采纳,获得10
3秒前
4秒前
CNAxiaozhu7发布了新的文献求助10
5秒前
鱼柒发布了新的文献求助20
5秒前
豆豆发布了新的文献求助10
5秒前
852应助张德帅采纳,获得10
5秒前
6秒前
jie酱拌面应助幸福妙柏采纳,获得10
7秒前
创不可贴发布了新的文献求助10
8秒前
尊敬的青易完成签到,获得积分10
8秒前
9秒前
莫歌完成签到 ,获得积分10
9秒前
97_完成签到,获得积分10
9秒前
9秒前
10秒前
12秒前
13秒前
lp完成签到,获得积分10
13秒前
14秒前
cherry bomb完成签到,获得积分10
14秒前
14秒前
15秒前
mgsmtmmd完成签到 ,获得积分10
15秒前
开朗的豪发布了新的文献求助10
16秒前
田様应助合适的梦菡采纳,获得10
16秒前
donwe发布了新的文献求助10
17秒前
浮游应助探探采纳,获得10
17秒前
19秒前
20秒前
wxd完成签到,获得积分10
20秒前
20秒前
科研通AI6应助G蛋白偶联采纳,获得10
21秒前
sunnyfish007发布了新的文献求助20
24秒前
烟花应助婷婷采纳,获得10
24秒前
慕青应助邹雪儿采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4746159
求助须知:如何正确求助?哪些是违规求助? 4094000
关于积分的说明 12665831
捐赠科研通 3805783
什么是DOI,文献DOI怎么找? 2101102
邀请新用户注册赠送积分活动 1126432
关于科研通互助平台的介绍 1002953