Fundamental study on the wetting property of liquid lithium

润湿 材料科学 锂(药物) 财产(哲学) 复合材料 工程物理 纳米技术 心理学 精神科 认识论 工程类 哲学
作者
Jiangyan Wang,Hansen Wang,Jin Xie,Ankun Yang,Allen Pei,Chun-Lan Wu,Feifei Shi,Yayuan Liu,Dingchang Lin,Yongji Gong,Yi Cui
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:14: 345-350 被引量:183
标识
DOI:10.1016/j.ensm.2018.05.021
摘要

The wetting behavior of molten liquid lithium is important to many fields of applications, especially to the Li-matrix composite anodes for batteries. Although changing the wettability of matrices has been previously shown through surface-coating, the selection criteria for suitable coating materials and optimal coating thickness and the mechanism of wettability improvement still remain unclear. Here, we study the effects of temperature, surface chemistry and surface topography on the wettability of substrates by molten liquid lithium. We summarize the following guiding principles: 1) Higher temperature decreases the viscosity of molten liquid lithium and produces smaller contact angle. 2) The wettability can be improved by coating the substrates with Li-reactive materials. The negative Gibbs free energy drives the wetting thermodynamically. The solid reaction product (Li2O) can cause kinetic barriers to wet. The contact angle decreases along with the increase of Li-reactive materials' coating thickness since more materials give more negative Gibbs free energy. Among all the coating materials, gold shows the best wettability due to the large negative Gibbs free energy released by the Li-Au reaction thus providing a strong driving force, and the lack of solid product (Li2O) formation thus avoiding any spreading resistance of liquid lithium. 3) Substrate morphology also affects the wetting behavior of molten lithium, in way similar to water wetting. Surface roughness can increase drastically the lithiophobicity, resulting in super lithiophobic surface. These findings provide important insights in the design of Li-matrix composites and open up new opportunities for the practical application of lithium.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
勤奋傲儿发布了新的文献求助10
刚刚
1秒前
1秒前
李爱国应助11采纳,获得10
2秒前
2秒前
2秒前
逗乐完成签到,获得积分10
2秒前
科研通AI6应助杂粮米采纳,获得10
2秒前
搜集达人应助想逃离采纳,获得10
2秒前
2秒前
无花果应助你好采纳,获得10
3秒前
梁小乐关注了科研通微信公众号
3秒前
Yang发布了新的文献求助10
3秒前
aaaa发布了新的文献求助30
4秒前
我是老大应助宇宙拿铁采纳,获得10
4秒前
5秒前
李汀发布了新的文献求助10
5秒前
lfc发布了新的文献求助10
5秒前
孙Tuan发布了新的文献求助30
6秒前
6秒前
小何完成签到,获得积分10
6秒前
慕青应助尼尔多隆将军采纳,获得30
7秒前
洁净晓夏完成签到 ,获得积分10
7秒前
7秒前
个性的海之完成签到,获得积分10
7秒前
7秒前
eureka完成签到,获得积分10
8秒前
打打应助雨霧雲采纳,获得50
8秒前
东山发布了新的文献求助10
8秒前
湫q发布了新的文献求助10
9秒前
10秒前
10秒前
我真的还想再活五百年完成签到,获得积分10
10秒前
请不要喊我回答问题完成签到,获得积分10
11秒前
11秒前
eureka发布了新的文献求助10
11秒前
Aliaoovo完成签到,获得积分10
11秒前
甜甜白莲完成签到,获得积分20
12秒前
东方元语应助啊啊啊啊采纳,获得20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648073
求助须知:如何正确求助?哪些是违规求助? 4774828
关于积分的说明 15042676
捐赠科研通 4807153
什么是DOI,文献DOI怎么找? 2570560
邀请新用户注册赠送积分活动 1527333
关于科研通互助平台的介绍 1486398