Collective Reconstructive Embeddings for Cross-Modal Hashing

计算机科学 散列函数 情态动词 人工智能 高分子化学 化学 计算机安全
作者
Mengqiu Hu,Yang Yang,Fumin Shen,Ning Xie,Richang Hong,Heng Tao Shen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 2770-2784 被引量:149
标识
DOI:10.1109/tip.2018.2890144
摘要

In this paper, we study the problem of cross-modal retrieval by hashing-based approximate nearest neighbor search techniques. Most existing cross-modal hashing works mainly address the issue of multi-modal integration complexity using the same mapping and similarity calculation for data from different media types. Nonetheless, this may cause information loss during the mapping process due to overlooking the specifics of each individual modality. In this paper, we propose a simple yet effective cross-modal hashing approach, termed collective reconstructive embeddings (CRE), which can simultaneously solve the heterogeneity and integration complexity of multi-modal data. To address the heterogeneity challenge, we propose to process heterogeneous types of data using different modality-specific models. Specifically, we model textual data with cosine similarity-based reconstructive embedding to alleviate the data sparsity to the greatest extent, while for image data, we utilize the Euclidean distance to characterize the relationships of the projected hash codes. Meanwhile, we unify the projections of text and image to the Hamming space into a common reconstructive embedding through rigid mathematical reformulation, which not only reduces the optimization complexity significantly but also facilitates the inter-modal similarity preservation among different modalities. We further incorporate the code balance and uncorrelation criteria into the problem and devise an efficient iterative algorithm for optimization. Comprehensive experiments on four widely used multimodal benchmarks show that the proposed CRE can achieve a superior performance compared with the state of the art on several challenging cross-modal tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
蝃蝀完成签到,获得积分10
2秒前
席涑完成签到,获得积分10
3秒前
3秒前
日出完成签到,获得积分10
3秒前
零吾完成签到 ,获得积分10
6秒前
jennie完成签到 ,获得积分10
7秒前
7秒前
CodeCraft应助xu采纳,获得10
7秒前
日出发布了新的文献求助10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
TT应助科研通管家采纳,获得10
8秒前
淡然冬灵应助科研通管家采纳,获得30
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
打工牛牛应助科研通管家采纳,获得20
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
昏睡的蟠桃应助科研通管家采纳,获得200
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
笙陌应助科研通管家采纳,获得10
8秒前
小白应助科研通管家采纳,获得20
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
HEAUBOOK应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
HEAUBOOK应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
HEAUBOOK应助科研通管家采纳,获得10
9秒前
10秒前
武傲翔发布了新的文献求助10
12秒前
12秒前
FOX完成签到,获得积分10
15秒前
osmanthus完成签到,获得积分10
15秒前
小木虫完成签到,获得积分10
15秒前
傻瓜子完成签到,获得积分10
16秒前
能HJY发布了新的文献求助10
16秒前
嗯好22222完成签到 ,获得积分10
16秒前
遇见飞儿完成签到,获得积分10
16秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801134
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330258
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681383
邀请新用户注册赠送积分活动 807540
科研通“疑难数据库(出版商)”最低求助积分说明 763728