TinySleepNet: An Efficient Deep Learning Model for Sleep Stage Scoring based on Raw Single-Channel EEG

过度拟合 计算机科学 人工智能 管道(软件) 深度学习 睡眠阶段 频道(广播) 机器学习 超参数 脑电图 睡眠(系统调用) 模式识别(心理学) 原始数据 多导睡眠图 人工神经网络 心理学 计算机网络 精神科 程序设计语言 操作系统
作者
Akara Supratak,Yike Guo
标识
DOI:10.1109/embc44109.2020.9176741
摘要

Deep learning has become popular for automatic sleep stage scoring due to its capability to extract useful features from raw signals. Most of the existing models, however, have been overengineered to consist of many layers or have introduced additional steps in the processing pipeline, such as converting signals to spectrogram-based images. They require to be trained on a large dataset to prevent the overfitting problem (but most of the sleep datasets contain a limited amount of class-imbalanced data) and are difficult to be applied (as there are many hyperparameters to be configured in the pipeline). In this paper, we propose an efficient deep learning model, named TinySleepNet, and a novel technique to effectively train the model end-to-end for automatic sleep stage scoring based on raw single-channel EEG. Our model consists of a less number of model parameters to be trained compared to the existing ones, requiring a less amount of training data and computational resources. Our training technique incorporates data augmentation that can make our model be more robust the shift along the time axis, and can prevent the model from remembering the sequence of sleep stages. We evaluated our model on seven public sleep datasets that have different characteristics in terms of scoring criteria and recording channels and environments. The results show that, with the same model architecture and the training parameters, our method achieves a similar (or better) performance compared to the state-of-the-art methods on all datasets. This demonstrates that our method can generalize well to the largest number of different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助十七采纳,获得30
刚刚
钟小凯完成签到 ,获得积分10
刚刚
桐桐应助一杆长空采纳,获得30
1秒前
Lucas应助LCCCC采纳,获得10
1秒前
hlb发布了新的文献求助10
1秒前
2秒前
Ikkyu完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
脑洞疼应助lilijob采纳,获得10
4秒前
玛卡巴卡发布了新的文献求助10
4秒前
qqqxl发布了新的文献求助10
5秒前
5秒前
完美世界应助好运连连采纳,获得10
5秒前
童慎卓发布了新的文献求助10
5秒前
123发布了新的文献求助10
5秒前
Fancy完成签到,获得积分20
6秒前
aaa1发布了新的文献求助10
6秒前
zhangrun01发布了新的文献求助10
6秒前
6秒前
Litianxue发布了新的文献求助10
6秒前
7秒前
ZZY发布了新的文献求助10
8秒前
小鱼鱼Fish发布了新的文献求助10
8秒前
大帅比完成签到 ,获得积分10
9秒前
9秒前
hnxxangel发布了新的文献求助10
9秒前
9秒前
9秒前
细心水绿完成签到,获得积分10
9秒前
10秒前
南枫发布了新的文献求助10
10秒前
10秒前
数世博完成签到,获得积分10
10秒前
WLLLR完成签到,获得积分10
10秒前
美好的鼠标完成签到 ,获得积分10
11秒前
可爱的函函应助明天见采纳,获得10
11秒前
Lina发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261749
求助须知:如何正确求助?哪些是违规求助? 4422906
关于积分的说明 13767729
捐赠科研通 4297318
什么是DOI,文献DOI怎么找? 2357911
邀请新用户注册赠送积分活动 1354280
关于科研通互助平台的介绍 1315383