亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TinySleepNet: An Efficient Deep Learning Model for Sleep Stage Scoring based on Raw Single-Channel EEG

过度拟合 计算机科学 人工智能 管道(软件) 深度学习 睡眠阶段 频道(广播) 机器学习 超参数 脑电图 睡眠(系统调用) 模式识别(心理学) 原始数据 多导睡眠图 人工神经网络 操作系统 精神科 计算机网络 程序设计语言 心理学
作者
Akara Supratak,Yike Guo
标识
DOI:10.1109/embc44109.2020.9176741
摘要

Deep learning has become popular for automatic sleep stage scoring due to its capability to extract useful features from raw signals. Most of the existing models, however, have been overengineered to consist of many layers or have introduced additional steps in the processing pipeline, such as converting signals to spectrogram-based images. They require to be trained on a large dataset to prevent the overfitting problem (but most of the sleep datasets contain a limited amount of class-imbalanced data) and are difficult to be applied (as there are many hyperparameters to be configured in the pipeline). In this paper, we propose an efficient deep learning model, named TinySleepNet, and a novel technique to effectively train the model end-to-end for automatic sleep stage scoring based on raw single-channel EEG. Our model consists of a less number of model parameters to be trained compared to the existing ones, requiring a less amount of training data and computational resources. Our training technique incorporates data augmentation that can make our model be more robust the shift along the time axis, and can prevent the model from remembering the sequence of sleep stages. We evaluated our model on seven public sleep datasets that have different characteristics in terms of scoring criteria and recording channels and environments. The results show that, with the same model architecture and the training parameters, our method achieves a similar (or better) performance compared to the state-of-the-art methods on all datasets. This demonstrates that our method can generalize well to the largest number of different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢朝邦完成签到 ,获得积分10
刚刚
Owen应助体贴仙人掌采纳,获得10
2秒前
玛琳卡迪马完成签到,获得积分10
6秒前
10秒前
15秒前
Yon完成签到 ,获得积分10
18秒前
23秒前
acc完成签到,获得积分10
24秒前
acc发布了新的文献求助10
28秒前
34秒前
苗条白枫完成签到 ,获得积分10
36秒前
38秒前
学术小白完成签到,获得积分10
39秒前
大橘发布了新的文献求助10
40秒前
学术小白发布了新的文献求助10
42秒前
tkurds完成签到,获得积分10
42秒前
大橘完成签到,获得积分20
45秒前
CATH完成签到 ,获得积分10
45秒前
Nakacoke77完成签到,获得积分10
51秒前
Becky完成签到 ,获得积分10
53秒前
畅快行云完成签到,获得积分20
59秒前
华仔应助jeff采纳,获得10
1分钟前
Orange应助eurus采纳,获得10
1分钟前
TopBanana完成签到 ,获得积分10
1分钟前
锅锅应助学术小白采纳,获得10
1分钟前
单薄天宇应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
jeff完成签到,获得积分20
1分钟前
tkurds发布了新的文献求助10
1分钟前
az完成签到 ,获得积分10
1分钟前
王某人完成签到 ,获得积分10
1分钟前
打打应助默默犀牛采纳,获得30
1分钟前
1分钟前
默默犀牛完成签到,获得积分10
1分钟前
Carrots完成签到 ,获得积分10
1分钟前
1分钟前
rofsc完成签到 ,获得积分10
1分钟前
1分钟前
FashionBoy应助王路飞采纳,获得10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336687
关于积分的说明 10281846
捐赠科研通 3053424
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803581
科研通“疑难数据库(出版商)”最低求助积分说明 761457