氮化硼
热导率
微电子
材料科学
光电子学
硼
硼同位素
带隙
声子
复合材料
氮化物
分析化学(期刊)
纳米技术
凝聚态物理
化学
物理
图层(电子)
有机化学
色谱法
作者
Ke Chen,Bai Song,Navaneetha K. Ravichandran,Qiye Zheng,Xi Chen,Hwijong Lee,Haoran Sun,Sheng Li,Geethal Amila Gamage,Fei Tian,Zhiwei Ding,Qichen Song,Akash Rai,Hanlin Wu,Pawan Koirala,Aaron J. Schmidt,Kenji Watanabe,Bing Lv,Zhifeng Ren,Li Shi
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2020-01-10
卷期号:367 (6477): 555-559
被引量:242
标识
DOI:10.1126/science.aaz6149
摘要
Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched 10B or 11B. In comparison, we found that the isotope enhancement of κ is considerably lower for boron phosphide and boron arsenide as the identical isotopic mass disorder becomes increasingly invisible to phonons. The ultrahigh κ in conjunction with its wide bandgap (6.2 electron volts) makes cBN a promising material for microelectronics thermal management, high-power electronics, and optoelectronics applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI